Skip to main content Accessibility help
Hostname: page-component-684899dbb8-67wsf Total loading time: 1.145 Render date: 2022-05-19T02:35:20.627Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

1.2 - Introduction: DNA

from I. - Introduction

Published online by Cambridge University Press:  05 August 2014

Peter Forster
Cambridge Society for the Application of Research, Churchill College
Colin Renfrew
University of Cambridge
Colin Renfrew
University of Cambridge
Get access


The study of human molecular genetics, made possible through the elucidation of the structure of DNA (Watson & Crick 1953), has in recent years contributed increasingly to the understanding of prehistory. Archaeogenetics, the study of the human past using the techniques of molecular genetics, now provides a framework for investigating the out-of-Africa expansion of our species, Homo sapiens, and the means of elucidating its later population history. It is also informative about the earlier hominin species Homo neanderthalensis.

DNA is the genetic material in all life forms that contains the information determining the form and function of the organism. All organisms, whether humans, fungi or bacteria, consist of cells. These cells are largely constructed of four macromolecular building blocks: proteins, lipids, carbohydrates and the nucleic acids (RNA and DNA). DNA works as the blueprint within each cell for the synthesis of the proteins. The structure of DNA is a double-stranded linear molecule, the so-called double helix. This contains linear sequences of the four chemical bases – adenine, cytosine, guanine and thymine – attached to the DNA backbone. DNA is passed on from one generation to another. In humans, specific cells, egg cells and sperm cells, are the vehicles of transmission.

In animals generally, nuclear DNA and mitochondrial DNA (mtDNA) are distinct entities within each cell, and their mode of inheritance differs. mtDNA is passed down only through the mother to her children. The greater part of the cell’s DNA is packaged into chromosomes that are located in the cell’s nucleus. Here it is necessary to distinguish between the Y chromosome and the other nuclear DNA from the point of view of inheritance. While the Y chromosome is passed down exclusively from father to son, the other nuclear DNA is passed down to the children from both parents.

Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Bendall, K. E., Macaulay, V. A., Baker, J. R. & Sykes, B. C. 1996. Heteroplasmic point mutations in the human mtDNA control region. American Journal of Human Genetics 59: 1276–87.Google Scholar
Bramanti, B., Thomas, M. G., Haak, W., Unterlaender, M., Jores, P., Tambets, K., Antanaitis- Jacobs, I., Haidle, M. N., Jankauskas, R., Kind, C. J., Lueth, F., Terberger, T., Hiller, J., Matsumura, S., Forster, P. & Burger, J. 2009. Genetic discontinuity between local hunter-gatherers and central Europe’s first farmers. Science 326: 137–40.Google Scholar
Bräuer, G. 1989. The evolution of modern humans: a comparison of the African and non-African evidence, pp. 123–54 in (Mellars, P. & Stringer, C., eds.) The Human Revolution: behavioural and biological perspectives in the origins of modern humans. Edinburgh University Press: Edinburgh.
Brinkmann, B., Klintschar, M., Neuhuber, F., Hühne, J. & Rolf, B. 1998. Mutation rate in human microsatellites: influence of the structure and length of the tandem repeat. American Journal of Human Genetics 62: 1408–15.Google Scholar
Cann, R. L., Stoneking, M. & Wilson, A. C. 1987. Mitochondrial DNA and evolution. Nature 325: 31–6.Google Scholar
Chen, Y. S., Torroni, A., Excoffier, L., Santachiara-Benerecetti, A. S. & Wallace, D. C. 1995. Analysis of mtDNA analysis variation in African populations reveals the most ancient of all human continent-specific haplogroups. American Journal of Human Genetics 57: 133–49.Google Scholar
Currat, M., Excoffier, L. & Ray, N. 2008. Genetic simulations of population interactions during past human expansions in Europe, pp. 37–47 in (Matsumara, S., Forster, P. & Renfrew, C., eds.) Simulations, Genetics, and Human Prehistory. McDonald Institute for Archaeological Research: Cambridge.
Dennis, C. 2003. Error reports threaten to unravel databases of mitochondrial DNA. Nature 421: 773–4.Google Scholar
Falush, D., Stephens, M. & Pritchard, J. K. 2003. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164: 1567–87.Google Scholar
Forster, L., Forster, P., Lutz-Bonengel, S., Willkomm, H. & Brinkmann, B. 2002. Natural radioactivity and human mitochondrial DNA mutations. Proceedings of the National Academy of Sciences USA 99: 13950–4.Google Scholar
Forster, P. 2003. To err is human. Annals of Human Genetics 67: 2–4.Google Scholar
Forster, P. 2004. Ice Ages and the mitochondrial DNA chronology of human dispersals: a review. Philosophical Transactions of the Royal Society of London B 359: 255–64.Google Scholar
Forster, P. 2009. Information provided for Episode 1 “Out of Africa” in the BBC2 television series The Incredible Human Journey, broadcast 10 May 2009.
Forster, P. & Renfrew, C. 2011. Mother tongue and Y chromosomes. Science 333: 1390–1.Google Scholar
Forster, P., Torroni, A., Renfrew, C. & Röhl, A. 2001. Phylogenetic star contraction applied to Asian and Papuan mtDNA evolution. Molecular Biology and Evolution 18: 1864–81.Google Scholar
François, O., Currat, M., Ray, N., Han, E., Excoffier, L. & Novembre, J. 2010. Principal component analysis under population genetic models of range expansion and admixture. Molecular Biology and Evolution 27: 1257–68.Google Scholar
Green, R. E. et al. 2010. A draft sequence of the Neanderthal genome. Science 328: 710–22.Google Scholar
Haak, W., Forster, P., Bramanti, B., Matsumura, S., Brandt, G., Tänzer, M., Villems, R., Renfrew, C., Gronenborn, D., Alt, K. W. & Burger, J. 2005. Ancient DNA from the first European farmers at 7500-year-old Neolithic sites. Science 310: 1016–18.Google Scholar
Hasegawa, M., Di Rienzo, A., Kocher, T. D. & Wilson, A. C. 1993. Towards a more accurate time scale for the human mitochondrial tree. Journal of Molecular Evolution 37: 347–54.Google Scholar
Ingram, C. J., Mulcare, C. A., Itan, Y., Thomas, M. G. & Swallow, D. M. 2009. Lactose digestion and the evolutionary genetics of lactase persistence. Human Genetics 124: 579–91.Google Scholar
Jehaes, E., Pfeiffer, H., Tporak, K., Decorte, R., Brinkmann, B. & Cassiman, J. J. 2001. Mitochondrial DNA analysis of the putative heart of Louis XVII, son of Louis XVI and Marie-Antoinette. European Journal of Human Genetics 9: 185–90.Google Scholar
Jobling, M. A., Hurles, M. E. & Tyler-Smith, C. 2004. Human Evolutionary Genetics. Origins, Peoples and Disease. Garland Science: New York and Abingdon, UK.
Kayser, M. et al. 1997. Evaluation of Y-chromosomal STRs: a multicenter study. International Journal of Legal Medicine 110: 125–33, 141–9.Google Scholar
Keyser-Tracqui, C., Crubézy, E. & Ludes, B. 2003. Nuclear and mitochondrial DNA analysis of a 2000-year-old necropolis in the Egyin Gol Valley of Mongolia. American Journal of Human Genetics 73: 247–60.Google Scholar
Kittler, R., Kayser, M. & Stoneking, M. 2003. Molecular evolution of Pediculus humanus and the origin of clothing. Current Biology 13: 1414–17.Google Scholar
Krause, J., Briggs, A. W., Kircher, M., Maricic, T., Zwyns, N., Derevianko, A. & Pääbo, S. 2010a. A complete mtDNA genome of an Early Modern Human from Kostenki, Russia. Current Biology 20: 231–6.Google Scholar
Krause, J., Fu, Q., Good, J. M., Viola, B., Shunkov, M. V., Derevianko, A. P. & Pääbo, S. 2010b. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature 464: 894–7.Google Scholar
Krause, J., Orlando, L., Serre, D., Viola, B., Prüfer, K., Richards, M. P., Hublin, J-J., Hänni, C., Derevianko, A. P. & Pääbo, S. 2007. Neanderthals in central Asia and Siberia. Nature 449: 902–4.Google Scholar
Krings, M., Stone, A., Schmitz, R. W., Krainitzki, H., Stoneking, M. & Pääbo, S. 1997. Neandertal DNA sequences and the origin of modern humans. Cell 90: 19–30.Google Scholar
Lahr, M. M. & Foley, R. A. 1998. Towards a theory of modern human origins: geography, demography, and diversity in recent human evolution. American Journal of Physical Anthropology Suppl. 27: 137–76.Google Scholar
Macaulay, V., Hill, C., Achilli, A., Rengo, C., Clarke, D., Meehan, W., Blackburn, J., Semino, O., Scozzari, R., Cruciani, F., Taha, A., Shaari, N. K., Raja, J. M., Ismail, P., Zainussin, Z., Goodwin, W., Bulbeck, D., Bandelt, H. J., Oppenheimer, S., Torroni, A. & Richards, M. 2005. Single, rapid coastal settlement of Asia revealed by analysis of complete mitochondrial genomes. Science 308: 1034–36Google Scholar
Macaulay, V., Richards, M. B., Forster, P., Bendall, K. E., Watson, E., Sykes, B. C. & Bandelt, H-J. 1997. mtDNA mutation rates – no need to panic. American Journal of Human Genetics 61: 983–6.Google Scholar
Malmström, H., Gilbert, M. T., Thomas, M. G., Brandström, M., Storå, J., Molnar, P., Andersen, P. K., Bendixen, C., Holmlund, G., Götherström, A. & Willerslev, E. 2009. Ancient DNA reveals lack of continuity between neolithic hunter-gatherers and contemporary Scandinavians. Current Biology 19: 1758–62.Google Scholar
Matsumura, S. & Forster, P. 2008a. Introduction pp. 1–6 in (Matsumara, S., Forster, P. & Renfrew, C., eds.) Simulations, Genetics, and Human Prehistory. McDonald Institute for Archaeological Research: Cambridge.
Matsumura, S. & Forster, P. 2008b. Generation time and effective population size in Polar Eskimos. Proceedings of the Royal Society B 275: 1501–8.Google Scholar
Ovchinnikov, I. V., Götherström, A., Romanova, G. P., Kharitonov, V. M., Lidén, K. & Goodwin, W. 2000. Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature 404: 490–3.Google Scholar
Pritchard, J. K., Stephens, M. & Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–59.Google Scholar
Ray, N., Currat, M. & Excoffier, L. 2008. Incorporating environmental heterogeneity in spatially-explicit simulations of human genetic diversity, pp. 103–17 in (Matsumara, S., Forster, P. & Renfrew, C., eds.) Simulations, Genetics, and Human Prehistory. McDonald Institute for Archaeological Research: Cambridge.
Reich, D., Green, R. E., Kircher, M., Krause, J., Patterson, N., Durand, E. Y., Viola, B., Briggs, A. W., Stenzel, U., Johnson, P. L., Maricic, T., Good, J. M., Marques- Bonet, T., Alkan, C., Fu, Q., Mallick, S., Li, H., Meyer, M., Eichler, E. E., Stoneking, M., Richards, M., Talamo, S., Shunkov, M. V., Derevianko, A. P., Hublin, J. J., Kelso, J., Slatkin, M. & Pääbo, S. 2010. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468: 1053–60.Google Scholar
Roberts, A. 2009. The Incredible Human Journey. Bloomsbury: London.
Rosenberg, N. A., Pritchard, J. K., Weber, J. L., Cann, H. M., Kidd, K. K., Zhivitovsky, L. A. & Feldman, W. M. 2002. Genetic structure of human populations. Science 298: 2381–5.Google Scholar
Sarich, V. M. & Wilson, A. C. 1967. Immunological time scale for hominid evolution. Science 158: 1200–3.Google Scholar
Soares, P., Ermini, L., Thomson, N., Mormina, M., Rito, T., Röhl, A., Salas, A., Oppenheimer, S., Macaulay, V. & Richards, M. B. 2009. Correcting for purifying selection: an improved human mitochondrial molecular clock. American Journal of Human Genetics 854: 740–59.Google Scholar
Stone, A. C. & Stoneking, M. 1998. mtDNA analysis of a prehistoric Oneota population: implications for the peopling of the New World. American Journal of Human Genetics 62: 1153–70.Google Scholar
Stringer, C. 2007. The origin and dispersal of Homo sapiens: our current state of knowledge, pp. 15–20 in (Mellars, P., Boyle, K., Bar-Yosef, O. & Stringer, C., eds.) Rethinking the Human Revolution. McDonald Institute Monograph: Cambridge.
Stringer, C. 2010. BBC interview, December 22.
Takahata, N. & Satta, Y. 1997. Evolution of the primate lineage leading to modern humans: phylogenetic and demographic inferences from DNA sequences. Proceedings of the National Academy of Sciences USA 94: 4811–15.Google Scholar
Templeton, A. 2002. Out of Africa again and again. Nature 416: 45–51.Google Scholar
Trinkaus, E., Moldovan, O., Milota, S. et al. 2003. An Early Modern Human from the Peştera cu Oase, Romania. Proceedings of the National Academy of Sciences USA 100: 11231–6.Google Scholar
Underhill, P. A., Jin, L., Lin, A. A., Mehdi, S. Q., Jenkins, T., Vollrath, D., Davis, R. W., Cavalli-Sforza, L. L. & Oefner, P. J. 1997. Detection of numerous Y chromosome biallelic polymorphisms by denaturing high-performance liquid chromatography. Genome Research 7: 996–1005.Google Scholar
Wall, J. D. & Kim, S. K. 2007. Inconsistencies in Neanderthal genomic DNA sequences. PLoS Genetics 3: e175.Google Scholar
Watson, E., Forster, P., Richards, M. & Bandelt, H-J. 1997. Mitochondrial footprints of human expansions in Africa. American Journal of Human Genetics 61: 691–704.Google Scholar
Watson, J. D. & Crick, F. H. 1953. Molecular structure of nucleid acids: a structure for deoxyribose nucleid acid. Nature 171: 737–8.Google Scholar
YCC (Y Chromosome Consortium) 2002. A nomenclature system for the tree of human Y-chromosomal binary haplogroups. Genome Research 12: 339–48.Google Scholar
Zhivotsky, L. A., Underhill, P. A., Cinnioglu, C., Kayser, M., Morar, B., Kivisild, T., Scozzari, R., Cruciani, F., Destro-Bisol, G., Spedini, G., Chambers, G. K., Herrera, R. J., Yong, K. K., Gresham, D., Tournev, I., Feldman, M. W. & Kalaydjieva, L. 2004. The effective mutation rate at Y chromosome short tandem repeats, with application to human population-divergence time. American Journal of Human Genetics 74: 50–61.Google Scholar
Zischler, H., Hoss, M., Handt, O., von Haeseler, A., van der Kuyl, A. C. & Goudsmit, J. 1995. Detecting dinosaur DNA. Science 268: 1192–3.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the or variations. ‘’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction: DNA
  • Edited by Colin Renfrew, University of Cambridge, Paul Bahn
  • Book: The Cambridge World Prehistory
  • Online publication: 05 August 2014
  • Chapter DOI:
Available formats

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction: DNA
  • Edited by Colin Renfrew, University of Cambridge, Paul Bahn
  • Book: The Cambridge World Prehistory
  • Online publication: 05 August 2014
  • Chapter DOI:
Available formats

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction: DNA
  • Edited by Colin Renfrew, University of Cambridge, Paul Bahn
  • Book: The Cambridge World Prehistory
  • Online publication: 05 August 2014
  • Chapter DOI:
Available formats