Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-12-03T22:03:51.479Z Has data issue: false hasContentIssue false

Section 1 - Prevention and Screening

from Part II - Medical Topics

Published online by Cambridge University Press:  05 June 2019

Carrie D. Llewellyn
Affiliation:
University of Sussex
Susan Ayers
Affiliation:
City, University of London
Chris McManus
Affiliation:
University College London
Stanton Newman
Affiliation:
City, University of London
Keith J. Petrie
Affiliation:
University of Auckland
Tracey A. Revenson
Affiliation:
City University of New York
John Weinman
Affiliation:
King's College London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Antoniou, A., Pharoah, P. D., Narod, S., et al. (2003). Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. American Journal of Human Genetics, 72(5), 11171130.Google Scholar
Bleiker, E. M., Esplen, M. J., Meiser, B., et al. (2013). 100 years Lynch syndrome: what have we learned about psychosocial issues? Familial Cancer 2, 325339.Google Scholar
Burke, W., Daly, M. & Garber, J. (1997). Recommendations for follow-up care of individuals with an inherited predisposition to cancer: II. BRCA1 and BRCA2. Cancer Genetics Study Consortium. Journal of the American Medical Association 277, 9971003.Google Scholar
Chen, S. & Parmigiani, G.(2007). Meta-analysis of BRCA1 and BRCA2 penetrance. Journal of Clinical Oncology, 25(11), 13291333.Google Scholar
Chompret, A. (2002). The Li-Fraumeni syndrome. Biochemie, 84, 7582.CrossRefGoogle ScholarPubMed
Chompret, A., Brugieres, L., Ronsin, M., et al. (2000). P53 germline mutations in childhood cancers and cancer risk for carrier individuals. British Journal of Cancer, 82, 19321937.Google Scholar
Cousens, N., Kaur, R., Meiser, B., et al. (2016). Community attitudes towards a Jewish community BRCA1/2 testing program. Familial Cancer, epublication ahead of print.Google Scholar
Daly, M. B., Pilarski, R., Axilbund, J. E., et al. (2015). Genetic/familial high-risk assessment: breast and ovarian, version 2.2015. Journal of the National Comprehensive Cancer Network 14, 153162.CrossRefGoogle Scholar
Douma, K. F., Bleiker, E. M., Aaronson, N. K., et al. (2010). Long-term compliance with endoscopic surveillance for familial adenomatous polyposis. Colorectal Disease, 12, 11981207.Google Scholar
Elrick, A., Ashida, S., Ivanovich, J., et al. (2017). Psychosocial and clinical factors associated with family communication of cancer genetic test results among women diagnosed with breast cancer at a young age. Journal of Genetic Counseling, 26(1), 173181.Google Scholar
Forman, A. D. & Hall, M. J. (2009). Influence of race/ethnicity on genetic counseling and testing for hereditary breast and ovarian cancer. Breast Journal, 15 (Suppl. 1), S56S62.Google Scholar
Glassey, R., Ives, A., Saunders, C., et al. (2016). Decision making, psychological wellbeing and psychosocial outcomes for high risk women who choose to undergo bilateral prophylactic mastectomy: a review of the literature. Breast, 28, 130135.Google Scholar
Graves, K. D., Vegella, P., Poggi, E. A., et al. (2012). Long-term psychosocial outcomes of BRCA1/BRCA2 testing: differences across affected status and risk-reducing surgery choice. Cancer Epidemiology, Biomarkers & Prevention, 21(3): 445455.Google Scholar
Hirschberg, A. M., Chan-Smutko, G. & Pirl, W. F. (2015). Psychiatric implications of cancer genetic testing. Cancer, 121, 341360.Google Scholar
Howard, A. F., Balneaves, L. G. & Bottorff, J. L. (2009). Women’s decision making about risk-reducing strategies in the context of hereditary breast and ovarian cancer: a systematic review. Journal of Genetic Counseling, 18, 578597Google Scholar
Jasperson, K. W., Tuohy, T. M., Neklason, D. W., et al. (2010). Hereditary and familial colon cancer. Gastroenterology, 138, 20442058.Google Scholar
Kinney, A. Y., Butler, K. M., Schwartz, M. D., et al. (2014). Expanding access to BRCA1/2 genetic counseling with telephone delivery: a cluster randomized trial. Journal of the National Cancer Institute, 106, dju328.Google Scholar
Lesko, L. J. & Schmidt, S. (2013). Clinical implementation of genetic testing in medicine: a US regulatory science perspective. British Journal of Clinical Pharmacology, 77, 606611.Google Scholar
Lynch, H. T., Lynch, P. M., Lanspa, S. J., et al. (2009). Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clinical Genetics , 76, 118.Google Scholar
Malkin, D., Li, F. P., Strong, L. C., et al. (1990). Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas and other neoplasms. Science, 250, 12331238.CrossRefGoogle Scholar
Malkin, D., Garber, J. E., Strong, L., et al. (2016). The cancer predisposition revolution: how was the inherited basis of cancer foreshadowed? Science, 352, 10521053.CrossRefGoogle Scholar
Meiser, B., Quinn, V. F., Gleeson, M., et al. (2016). When knowledge of a heritable gene mutation comes out of the blue: treatment-focused genetic testing in women newly diagnosed with breast cancer. European Journal of Human Genetics, epublication in advance of print.Google Scholar
Monahan, K. J. & Hopkins, L. ( 2016). Diagnosis and management of hereditary gastric cancer. Recent Results in Cancer Research, 205, 4560.Google Scholar
Nichols, K. E., Malkin, D., Garber, J. E., et al. (2001). Germ-line p53 mutations predispose to a wide spectrum of early-onset cancers. Cancer, Epidemiology, Biomarkers and Prevention, 10, 8387.Google Scholar
Noar, S. M., Althouse, B. M., Ayers, J. W., Francis, D. B. & Ribisl, K. M. (2015). Cancer information seeking in the digital age: effects of Angelina Jolie’s prophylactic mastectomy announcement. Medical Decision Making, 35(1), 1621.CrossRefGoogle ScholarPubMed
Patenaude, A. F. (2012), Prophylactic Mastectomy: Insights from Women who Chose to Reduce Their Risk. Santa Barbara, CA; Praeger.Google Scholar
Patenaude, A. F. & Schneider, K. A. (2016). Issues arising in psychological consultations to help parents talk to minor and young adult children about their cancer genetic test result: a guide to providers. Journal of Genetic Counseling, 26, 251260.CrossRefGoogle Scholar
Ringwald, J., Wochnowski, C., Bosse, K., et al. (2016). Psychological distress, anxiety and depression of cancer-affected BRCA1/2 mutation carriers: a systematic review. Journal of Genetic Counseling, epublished ahead of print.Google Scholar
Robinson, L. S., Hendrix, A., Xie, X. J. et al., (2015). Prediction of cancer prevention: from mammogram screening to identification of BRCA1/2 mutation carriers in underserved populations. EBioMedicine, 21, 18271833.Google Scholar
Rodriguez, V. M., Corona, R., Bodurtha, J. N., et al. (2016). Family ties: the role of family context in family health history communication about cancer. Journal of Health Communication, 21, 346355.Google Scholar
Roussi, P. & Miller, S. M. (2014). Monitoring style of coping with cancer related threats: a review of the literature. Journal of Behavioral Medicine, 37(5), 931954.Google Scholar
Stan, D. L., Schuster, L. T. & Wick, M. J. (2013). Challenging and complex decisions in the management of the BRCA mutation carrier. Journal of Women’s Health, 22, 825834.Google Scholar
Syngal, S., Brand, R. E., Church, J. M., et al. (2015). ACG clinical guideline: genetic testing and management of hereditary gastrointestinal cancer syndromes. American Journal of Gastroenterology, 110, 223262.Google Scholar
Tercyak, K. P., Mays, D., DeMarco, T. A., et al. (2013). Decisional outcomes of maternal disclosure of BRCA1/2 genetic test results to children. Cancer Epidemiology, Biomarkers & Prevention, 22(7), 12601266.Google Scholar
van Oostrom, I., Meijers-Heijboer, H., Duivenvoorden, H. J., et al. (2006). Experience of parental cancer in childhood is a risk factor for psychological distress during genetic cancer susceptibility testing. Annals of Oncology, 17(7), 10901095.Google Scholar
Villani, A., Tabori, U., Schiffman, J., et al. (2011). Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncology, 12, 559567.Google Scholar
Wakefield, C. E., Hanlon, L. V., Tucker, K. M., et al. (2016). The psychological impact of genetic information on children: a systematic review. Genetics in Medicine, 18(8): 755762.Google Scholar

References

Allsup, S. J. & Gosney, M. A. (2002). Anxiety and depression in an older research population and their impact on clinical outcomes in a randomised controlled trial. Postgraduate Medical Journal, 78, 674677.Google Scholar
Burns, V. E., Ring, C., Drayson, M., et al. (2002). Cortisol and cardiovascular reactions to mental stress and antibody status following hepatitis B vaccination: a preliminary study. Psychophysiology, 39, 361368.Google Scholar
Burns, V. E., Carroll, D., Ring, C., et al. (2003). Antibody response to vaccination and psychosocial stress in humans: relationships and mechanisms. Vaccine, 21, 25232534.CrossRefGoogle ScholarPubMed
Gallagher, S., Phillips, A. C., Ferraro, A. J., et al. (2008). Social support is positively associated with the immunoglobulin M response to vaccination with pneumococcal polysaccharides. Biology and Psychology, 78, 211215.Google Scholar
Gallagher, S., Phillips, A. C., Drayson, M. T., et al. (2009). Caregiving for children with developmental disabilities is associated with a poor antibody response to influenza vaccination. Psychosomatic Medicine, 71, 341344.CrossRefGoogle ScholarPubMed
Glaser, R., Kiecolt-Glaser, J. K., Bonneau, R. H., et al. (1992). Stress-induced modulation of the immune response to recombinant hepatitis B vaccine. Psychosomatic Medicine, 54, 2229.Google Scholar
Glaser, R., Sheridan, J., Malarkey, W. B., et al. (2000). Chronic stress modulates the immune response to a pneumococcal pneumonia vaccine. Psychosomatic Medicine, 62: 804807.Google Scholar
Hayney, M. S., Love, G. D., Buck, J. M., et al. (2003). The association between psychosocial factors and vaccine-induced cytokine production. Vaccine, 21, 24282432.Google Scholar
Hayney, M. S., Coe, C. L., Muller, D., et al. (2014). Age and psychological influences on immune responses to trivalent inactivated influenza vaccine in the meditation or exercise for preventing acute respiratory infection (MEPARI) trial. Human Vaccines & Immunotherapeutics, 10, 8391.Google Scholar
Irwin, M. R., Olmstead, R. & Oxman, M. N. (2007). Augmenting immune responses to varicella zoster virus in older adults: a randomized, controlled trial of Tai Chi. Journal of the American Geriatric Society, 55, 511517.CrossRefGoogle ScholarPubMed
Irwin, M. R., Levin, M. J., Carrillo, C., et al. (2011). Major depressive disorder and immunity to varicella-zoster virus in the elderly. Brain, Behavior & Immunity, 25, 759766.Google Scholar
Jabaaij, L., Grosheide, P. M., Heijtink, R. A., et al. (1993). Influence of perceived psychological stress and distress on antibody response to low dose rDNA hepatitis B vaccine. Journal of Psychosomatic Research, 37, 361369.Google Scholar
Kiecolt-Glaser, J. K., Glaser, R., Gravenstein, S., et al. (1996). Chronic stress alters the immune response to influenza virus vaccine in older adults. Proceedings of the National Academy of Sciences USA, 93, 30433047.Google Scholar
Kohut, M. L., Cooper, M. M., Nickolaus, M. S., et al. (2002). Exercise and psychosocial factors modulate immunity to influenza vaccine in elderly individuals. Journals of Gerontology: Series A, Biological Sciences and Medical Sciences, 57, M557–562.Google Scholar
Kohut, M. L., Lee, W., Martin, A., et al. (2005). The exercise-induced enhancement of influenza immunity is mediated in part by improvements in psychosocial factors in older adults. Brain, Behavior & Immunity, 19, 357366.Google Scholar
Marsland, A. L., Cohen, S., Rabin, B. S., et al. (2001). Associations between stress, trait negative affect, acute immune reactivity, and antibody response to hepatitis B injection in healthy young adults. Health and Psychology, 20, 411.CrossRefGoogle ScholarPubMed
Marsland, A. L., Cohen, S., Rabin, B. S., et al. (2006). Trait positive affect and antibody response to hepatitis B vaccination. Brain, Behavior & Immunity, 20, 261269.CrossRefGoogle ScholarPubMed
Miller, G. E., Cohen, S., Pressman, S., et al. (2004). Psychological stress and antibody response to influenza vaccination: when is the critical period for stress, and how does it get inside the body? Psychosomatic Medicine, 66, 215223.Google Scholar
Morag, M., Morag, A., Reichenberg, A., et al. (1999). Psychological variables as predictors of rubella antibody titers and fatigue: a prospective, double blind study. Journal of Psychiatric Research, 33, 389395.Google Scholar
Moynihan, J. A., Larson, M. R., Treanor, J., et al. (2004). Psychosocial factors and the response to influenza vaccination in older adults. Psychosomatic Medicine, 66, 950953.Google Scholar
O’Connor, T. G., Winter, M. A., Hunn, J., et al. (2013). Prenatal maternal anxiety predicts reduced adaptive immunity in infants. Brain, Behavior & Immunity, 32, 2128.Google Scholar
Pedersen, A. F., Zachariae, R. & Bovbjerg, D. H. (2009). Psychological stress and antibody response to influenza vaccination: a meta-analysis. Brain, Behavior & Immunity, 23, 427433.Google Scholar
Phillips, A. C., Carroll, D., Burns, V. E., et al. (2005). Neuroticism, cortisol reactivity, and antibody response to vaccination. Psychophysiology, 42, 232238.Google Scholar
Phillips, A. C., Carroll, D., Burns, V. E., et al. (2006). Bereavement and marriage are associated with antibody response to influenza vaccination in the elderly. Brain, Behavior & Immunity, 20, 279289.CrossRefGoogle ScholarPubMed
Phillips, A. C., Gallagher, S., Carroll, D., et al. (2008). Preliminary evidence that morning vaccination is associated with an enhanced antibody response in men. Psychophysiology, 45, 663666.Google Scholar
Pressman, S. D., Cohen, S., Miller, G. E., et al. (2005). Loneliness, social network size, and immune response to influenza vaccination in college freshmen. Health and Psychology, 24, 297306.Google Scholar
Segerstrom, S. C., Schipper, L. J. & Greenberg, R. N. (2008). Caregiving, repetitive thought, and immune response to vaccination in older adults. Brain, Behavior & Immunity, 22, 744752.CrossRefGoogle ScholarPubMed
Vedhara, K., Cox, N. K., Wilcock, G. K., et al. (1999). Chronic stress in elderly carers of dementia patients and antibody response to influenza vaccination. Lancet, 353, 627631.Google Scholar
Vedhara, K., Bennett, P. D., Clark, S., et al. (2003). Enhancement of antibody responses to influenza vaccination in the elderly following a cognitive-behavioural stress management intervention. Psychotherapy and Psychosomatics, 72, 245252.Google Scholar
Wong, S. Y., Wong, C. K., Chan, F. W., et al. (2013). Chronic psychosocial stress: does it modulate immunity to the influenza vaccine in Hong Kong Chinese elderly caregivers? Age (Dordr) 35: 14791493.Google Scholar
Yirmiya, R., Pollak, Y., Morag, M., et al. (2000). Illness, cytokines, and depression. Annals of the New York Academy of Sciences, 917, 478487.Google Scholar

References

Andermann, A., Blancquaert, I., Beauchamp, S., et al. (2008). Revisiting Wilson and Jungner in the genomic age: a review of screening criteria over the past 40 years. Bulletin of the World Health Organization, 86 (4), 317319.Google Scholar
Anderson, A. S., Craigie, A. M., Caswell, S., et al. (2014). The impact of a bodyweight and physical activity intervention (BeWEL) initiated through a national colorectal cancer screening programme: randomised controlled trial. BMJ, 348, g1823.Google Scholar
Brodersen, J. & Siersma, V. D. (2013). Long-term psychosocial consequences of false-positive screening mammography. Annals of Family Medicine, 11(2), 106115.Google Scholar
Brouwers, M. C., De, V. C., Bahirathan, L., et al. (2011a). Effective interventions to facilitate the uptake of breast, cervical and colorectal cancer screening: an implementation guideline. Implementation Science, 6, 112.Google Scholar
Brouwers, M. C., De, V. C., Bahirathan, L., et al. (2011b). What implementation interventions increase cancer screening rates? A systematic review. Implementation Science, 6, 111.Google Scholar
Ferroni, E., Camilloni, L., Jimenez, B., et al. (2012). How to increase uptake in oncologic screening: a systematic review of studies comparing population-based screening programs and spontaneous access. Preventive Medicine, 55 (6), 587596.Google Scholar
Hall, S., Bobrow, M. & Marteau, T. M. (2000). Psychological consequences for parents of false negative results on prenatal screening for Down’s syndrome: retrospective interview study. BMJ 320(7232), 407412.Google Scholar
Hall, S., Chitty, L., Dormandy, E., et al. (2007). Undergoing prenatal screening for Down’s syndrome: presentation of choice and information in Europe and Asia. European Journal of Human Genetics, 15 (5), 563569.Google Scholar
Hoffmann, T. C. & Del, M. C. (2015). Patients’ expectations of the benefits and harms of treatments, screening, and tests: a systematic review. JAMA Internal Medicine, 175 (2), 274286.Google Scholar
Jorgensen, K. J., Keen, J. D. & Gotzsche, P. C. (2011). Is mammographic screening justifiable considering its substantial overdiagnosis rate and minor effect on mortality? Radiology, 260 (3), 621627.Google Scholar
Kopans, D. B., Smith, R. A. & Duffy, S. W. (2011). Mammographic screening and ‘overdiagnosis’. Radiology, 260 (3), 616620.Google Scholar
Lazcano-Ponce, E., Palacio-Mejia, L. S., Allen-Leigh, B., et al. (2008). Decreasing cervical cancer mortality in Mexico: effect of Papanicolaou coverage, birthrate, and the importance of diagnostic validity of cytology. Cancer Epidemiology, Biomarkers & Prevention, 17 (10), 28082817.CrossRefGoogle ScholarPubMed
Lu, M., Moritz, S., Lorenzetti, D., et al. (2012). A systematic review of interventions to increase breast and cervical cancer screening uptake among Asian women. BMC Public Health, 12, 413.Google Scholar
Miles, A., Cockburn, J., Smith, R. A., et al. (2004). A perspective from countries using organized screening programs. Cancer, 101 (Suppl. 5), 12011213.Google Scholar
Miles, A., Rainbow, S. & von Wagner, C. (2011). Cancer fatalism and poor self-rated health mediate the association between socioeconomic status and uptake of colorectal cancer screening in England. Cancer Epidemiology, Biomarkers & Prevention, 20 (10), 21322140.Google Scholar
Miles, A., McClements, P. L., Steele, R. J., et al. (2015). The psychological impact of a colorectal cancer diagnosis following a negative fecal occult blood test result. Cancer Epidemiology, Biomarkers & Prevention, 24 (7), 17.Google Scholar
Raffle, A. E. & Gray, J. A. M. (2007). Screening: Evidence and Practice. Oxford: Oxford University Press.Google Scholar
Solmi, F., von Wagner, C., Kobayashi, L. C., et al. (2015). Decomposing socio-economic inequality in colorectal cancer screening uptake in England. Social Science and Medicine, 134, 7686.Google Scholar
Troein, M., Rastam, L. & Selander, S. (2002). Changes in health beliefs after labelling with hypercholesterolaemia. Scandinavian Journal of Public Health, 30 (1), 7679.Google Scholar
van der Aalst, C. M., van Klaveren, R. J. & De Koning, H. J. (2010). Does participation to screening unintentionally influence lifestyle behaviour and thus lifestyle-related morbidity? Best Practice & Research: Clinical Gastroenterology, 24 (4), 465478.CrossRefGoogle ScholarPubMed
van Rijn, A. F., van Rossum, L. G., Deutekom, M., et al. (2008). Getting adequate information across to colorectal cancer screening subjects can be difficult. Journal of Medical Screening, 15 (3), 149152.CrossRefGoogle ScholarPubMed
Vlemmix, F., Warendorf, J. K., Rosman, A. N., et al. (2013). Decision aids to improve informed decision-making in pregnancy care: a systematic review. BJOG, 120 (3), 257266.Google Scholar
Wilson, J. M. & Junger, C. T. (1968). Principles and practice of screening for disease. Public Health Paper 34. World Health Organization.Google Scholar

References

Asplin, N., Wessel, H., Marions, L., et al. (2012). Pregnant women’s experiences, needs and preferences regarding information about malformation detected by ultrasound scan. Sexual and Reproductive Healthcare, 3, 7378.Google Scholar
Asplin, N., Wessel, H., Marions, L., et al. (2015). Maternal emotional wellbeing over time and attachment to the fetus when a malformation is detected. Sexual and Reproductive Healthcare. 6, 191195.Google Scholar
Biaggi, A., Conroy, S., Pawlby, S., et al. (2016). Identifying the women at risk of antenatal anxiety and depression: a systematic review. Journal of Affective Disorders, 191, 6277.CrossRefGoogle ScholarPubMed
Byatt, N., Moore Simas, T. A., Lundquist, R. S., et al. (2012). Strategies for improving perinatal depression treatment in North American outpatient obstetric settings. Journal of Psychosomatic Obstetrics and Gynecology, 33(4), 143161.Google Scholar
Chew-Graham, C. A., Sharp, D., Chamberlain, E., et al. (2009). Disclosure of symptoms of postnatal depression, the perspectives of health professionals and women: a qualitative study. BMC Family Practice, 10, 7. DOI: 10.1186/1471-2296-10-7.Google Scholar
Dahl, H., Hvidman, L., Jorgensen, F. S., et al. (2011). Knowledge of prenatal screening and psychological management of test decisions. Ultrasound in Obstetrics and Gynecology. 38: 152157.Google Scholar
Dennis, C.-L. & Chung-Lee, L. 2006. Postpartum depression help-seeking barriers and maternal treatment preferences: a qualitative systematic review. Birth, 33(4), 323331Google Scholar
Desgrées-Du-Loû, A., Brou, H., Djohanm, G., et al. (2009). Beneficial effects of offering prenatal HIV counselling and testing on developing a HIV preventive attitude among couples. Aids Behaviour. 13, 348.Google Scholar
El Den, S., O’Reilly, C. L. & Chen, T. F. (2015). A systematic review on the acceptability of perinatal depression screening. Journal of Affective Disorders, 188, 284303.Google Scholar
Field, T. A., Diego, M., Hernandez-Reif, M., et al. (2010). Comorbid depression and anxiety effects on pregnancy and neonatal outcome. Infant Behavior and Development, 33, 2329.Google Scholar
Gavin, N. I., Gaynes, B. N., Lohr, K. N., et al. (2005). Perinatal depression: a systematic review of prevalence and incidence. Obstetrics and Gynecology, 106, 10711083.Google Scholar
Georgsson Ohman, S., Grunewald, C. & Waldenstrom, U. (2009). Perception of risk in relation to ultrasound screening for Down’s syndrome during pregnancy. Midwifery, 25, 264276.Google Scholar
Harris, J. M., Franck, L. & Michie, S. (2012). Assessing the psychological effects of prenatal screening tests for maternal and foetal conditions: a systematic review. Journal of Reproductive and Infant Psychology, 30(3), 222246.Google Scholar
Hewison, J. (2015). Psychological aspects of individualized choice and reproductive autonomy in prenatal screening. Bioethics, 29, 918.Google Scholar
Kaasen, A., Helbig, A., Malt, U. F., et al. (2010). Acute maternal social dysfunction, health perception and psychological distress after ultrasonographic detection of a fetal structural anomaly. BJOG. 117, 11271138.Google Scholar
Kingston, D. E., Biringer, A., McDonald, S. W., et al. (2015a). Preferences for mental health screening among pregnant women: a cross-sectional study. American Journal of Preventive Medicine, 49.CrossRefGoogle ScholarPubMed
Kingston, D. E., Biringer, A., Toosi, A., et al. (2015b). Disclosure during prenatal mental health screening. Journal of Affective Disorders, 186, 9094.Google Scholar
Lancet (2016, 10 February). Screening for perinatal depression: A missed opportunity [Editorial]. Lancet, 387. http://dx.doi.org/10.1016/S0140-6736(16)00265-8Google Scholar
Lou, S., Mikkelsen, L., Hvidman, L., et al. (2014). Does screening for Down’s syndrome cause anxiety in pregnant women? A systematic review. Acta Obstetricia et Gynecologica Scandinavica, 94(1), 1527.Google Scholar
McCoyd, J. L. (2013). Preparation for prenatal decision-making: a baseline of knowledge and reflection in women participating in prenatal screening. Journal of Psychosomatic Obstetrics and Gynaecology, 34, 38.Google Scholar
Milgrom, J., Gemmill, A. W., Bilszta, J. L., et al. (2008). Antenatal risk factors for postnatal depression: a large prospective study. Journal of Affective Disorders, 108, 147157.Google Scholar
Muller, C. & Cameron, L. D. (2015). It’s complicated: factors predicting decisional conflict in prenatal diagnostic testing. Health Expectations, 19, 338342.Google Scholar
National Institute for Health and Care Excellence. (2014). Antenatal and Postnatal Mental Health: Clinical Management and Service Guidance. Clinical Guideline 192. London: National Institute for Health and Care Excellence.Google Scholar
O’Connor, T. G., Heron, J., Golding, J., et al. (2003). Maternal anxiety and behavioural/emotional problems in children: a test of a programming hypothesis. Journal of Child Psychology and Psychiatry, 44, 10251036Google Scholar
Public Health England. (2015) Evidence review criteria: national screening programmes. www.gov.uk/government/publications/evidence-review-criteria-national-screening-programmes.Google Scholar
van den Berg, M., Timmermans, D. R. M., Knol, D. L., et al. (2008). Understanding pregnant women’s decision making concerning prenatal screening. Health Psychology, 27, 430437.Google Scholar
Viaux-Savelon, S., Dommergues, M., Rosenblum, O., et al. (2012). Prenatal ultrasound screening: false positive soft markers may alter maternal representations and mother-infant interaction. PLOS One. http://dx.doi.org/10.1371/journal.pone.0030935.Google Scholar
World Health Organization (2011). Community genetics services: report of a WHO Consultation on community genetics in low- and middle-income countries. http://apps.who.int/iris/bitstream/10665/44532/1/9789241501149_eng.pdf.Google Scholar
World Health Organization (2016). mhGAP Intervention Guide: Version 2.0 for mental, neurological and substance use disorders in non-specialized health settings. www.who.int/mental_health/mhgap/mhGAP_intervention_guide_02/en.Google Scholar

References

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179211.CrossRefGoogle Scholar
Edwards, A. G. K., Naik, G., Ahmed, H., et al. (2013). Personalised risk communication for informed decision making about taking screening tests. Cochrane Database of Systematic Reviews, 2. DOI: 10.1002/14651858.CD001865.pub3.Google Scholar
Hay, J. L., McCaul, K. D. & Magnan, R. E. (2006). Does worry about breast cancer predict screening behaviors? A meta-analysis of the prospective evidence. Preventive Medicine, 42, 401408.CrossRefGoogle ScholarPubMed
Janz, N. K. & Becker, M. H. (1984). The health belief model: a decade later. Health Education Quarterly, 11, 147.Google Scholar
Kivineimi, M. T., Bennett, A., Zaiter, M. & Marshall, J. R. (2011). Individual-level factors in colorectal cancer screening: a review of the literature on the relation of individual-level health behavior constructs and screening behavior. Psycho-Oncology, 20, 10231033.Google Scholar
Klein, M. P., Bloch, M., Hesse, B. W., McDonald, P. G., Nebeling, L., et al. (2014). Behavioral research in cancer prevention and control: a look to the future. American Journal of Preventive Medicine, 46, 303311.Google Scholar
Leventhal, H., Brisette, I. & Leventhal, E. A. (2003). The common-sense model of self-regulation of health and illness. In Cameron, L. D. & Leventhal, H. (eds), The self-Regulation of Health and Illness Behaviour (pp. 4265). London: Routledge.Google Scholar
Noar, S. M. & Zimmerman, R. S. (2005). Health behavior theory and cumulative knowledge regarding health behaviors: are we moving in the right direction? Health Education Research, 20, 275290.Google Scholar
O’Brien, M. A., Whelan, T. J., Villasis-Keever, M., et al. (2009). Do patient decision aids meet effectiveness criteria of the International Patient Decision Aid Standards Collaboration? A systematic review and meta-analysis. Medical Decision Making, 27, 554574.Google Scholar
O’Connor, A. M., Bennett, C., Stacey, D., et al. (2007). Do patient decision aids meet effectiveness criteria of the international patient decision aid standards collaboration? A systematic review and meta-analysis. Medical Decision Making, 27, 554574.Google Scholar
Prochaska, J. O. & DiClemente, C. C. (1983). Stages and processes of self-change in smoking: toward an integrative model of change. Journal of Consulting and Clinical Psychology, 5, 390395.CrossRefGoogle Scholar
Rogers, R. W. (1983). Cognitive and physiological processes in fear appeals and attitude change: a revised theory of protection motivation. In Cacioppo, J. & Petty, R. (eds), Social Psychophysiology. New York: Guilford Press.Google Scholar
Rothman, A. J. (2000). Toward a theory-based analysis of behavioral maintenance. Health Psychology, 19, 6469.Google Scholar
Rutter, D. R. (2000). Attendance and reattendance for breast cancer screening: a prospective 3-year test of the Theory of Planned Behavior. British Journal of Health Psychology, 5, 113.Google Scholar
Smith, R. A., Andrews, K., Brooks, D., et al. (2016). Cancer screening in the United States, 2016: a review of current American Cancer Society guidelines and current issues in cancer screening. CA: A Cancer Journal for Clinicians, 66, 95114.Google Scholar
Sohl, S. J. & Moyer, A. (2007). Tailored interventions to promote mammography screening: a meta-analytic review. Preventive Medicine, 45, 252261.Google Scholar
Spencer, L. S., Pagell, F. & Adams, T. (2005). Applying the transtheoretical model to cancer screening behavior. American Journal of Health Behavior, 29, 3656.Google Scholar
Wardle, J., Robb, K., Vernon, S. & Waller, J. (2015). Screening for prevention and early diagnosis of cancer. American Psychologist, 70, 119133.Google Scholar
Weinstein, N. D. (1988). The precaution adoption process. Health Psychology, 7, 355386.Google Scholar

References

Asif, I. M., Price, D., Fisher, L. A., et al. (2015a). Stages of psychological impact after diagnosis with serious or potentially lethal cardiac disease in young competitive athletes: a new model. Journal of Electrocardiology, 48(3), 289310.Google Scholar
Asif, I. M., Price, D., Harmon, K. G., et al. (2015b). The psychological impact of cardiovascular screening in young athletes: perspectives across age, race and gender. Clinical Journal of Sports Medicine, 25(6), 464471.Google Scholar
Borjesson, M., Urhausen, A., Kouidi, E., et al. (2011). Cardiovascular evaluation of middle-aged/senior individuals engaged in leisure-time sport activities: position stand from the sections of exercise physiology and sports cardiology of the European Association of Cardiovascular Prevention and Rehabilitation. The European Journal of Cardiovascular Prevention and Rehabilitation , 18, 446458.Google Scholar
Bowles-Biesecker, B., Schwartz, M. D., Marteau, T. M. (2013) Enhancing informed choice to undergo health screening: a systematic review. American Journal of Health Behaviour, 37(3), 351359. DOI: 10.5993/AJHB.37.3.8.Google Scholar
Christensen, B., Engberg, M. & Lauritzen, T. (2004). No long-term psychological reaction to information about increased risk of coronary heart disease in general practice. European Journal of Cardiovascular Prevention and Rehabilitation, 11, 239243.Google Scholar
Connelly, J., Cooper, J., Mann, A. et al. (1998). The psychological impact of screening for risk of coronary heart disease in primary care settings. Journal of Cardiovascular Risk, 5, 185191.Google Scholar
Corrado, D., Pelliccia, A., Bjørnstad, H., et al. (2005). Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: proposal for a common European protocol. European Heart Journal, 26: 516524.Google Scholar
Department of Health. (2000). Preventing coronary heart disease in high risk patients. In National Service Framework for Coronary Heart Disease. London: Stationery Office.Google Scholar
Ebrahim, S., Tayor, F., Ward, K., et al. (2011). Multiple risk factor interventions for primary prevention of coronary heart disease. Cochrane Database of Systematic Reviews. DOI: 10.1002/14651858.cd001561.pub3.Google Scholar
Goldberg, D. & Williams, P. (1988) A User’s Guide to the General Health Questionnaire. Windsor: NFER Nelson.Google Scholar
Haynes, R. B., Sackett, D. L., Taylor, W., et al. (1978). Increased absenteeism from work after detection and labeling of hypertensive patients. New England Journal of Medicine, 299, 741744.Google Scholar
Kaltman, J. R., Thompson, P. D., Lantos, J., et al. (2011). Screening for sudden cardiac death in the young: report from a National Heart, Lung, and Blood Institute working group. Circulation, 123, 19111918.Google Scholar
Ljungqvist, A., Jenoure, P. J., Engebretsen, L., et al. (2009). The International Olympic Committee (IOC) statement on periodic health evaluation of elite athletes, March 2009. Clinical Journal of Sports Medicine, 19, 347365.Google Scholar
Marteau, T. M. & Kinmonth, A. L. (2002). Screening for cardiovascular risk: public health imperative or matter for individual informed choice? British Medical Journal, 325, 7880.Google Scholar
Marteau, T. M., Kinmonth, A. L., Pyke, S., et al. (1995). Readiness for lifestyle advice: self-assessment of coronary risk prior to screening in the British family heart study. British Journal of General Practice, 45, 58.Google Scholar
Marteau, T. M., Kinmonth, A. L., Thompson, S., et al. (1996). The psychological impact of cardiovascular screening and intervention in primary care: a problem of false reassurance? British Journal of General Practice, 46, 577582.Google Scholar
National Institute for Health and Care Excellence (NICE). (2014). Cardiovascular disease risk assessment and management. https://cks.nice.org.uk/cvd-risk-managment.Google Scholar
Shaw, C., Abrams, K. & Marteau, T. M. (1999). Psychological impact of predicting individuals’ risks of illness: a systematic review. Social Science and Medicine, 49, 15711598.Google Scholar
Stampfer, M. J., Hu, F. B., Manson, J. E., et al. (2000). Primary prevention of coronary heart disease in women through diet and lifestyle. New England Journal of Medicine, 343, 1622.Google Scholar
Tymstra, T. & Bieleman, B. (1987). The psychosocial impact of mass screening for cardiovascular risk factors. Family Practice, 4, 287290.Google Scholar
World Health Organization (WHO). (2016). Fact Sheet: Cardiovascular Diseases (CVDs) Updated June 2016. Geneva: WHO.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.