Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-bxbhv Total loading time: 3.184 Render date: 2023-02-06T07:41:42.767Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Part VII - Principles Based on Generative Activity in Multimedia Learning

Published online by Cambridge University Press:  19 November 2021

Richard E. Mayer
Affiliation:
University of California, Santa Barbara
Logan Fiorella
Affiliation:
University of Georgia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ainsworth, S., & Loizou, A. (2003). The effects of self‐explaining when learning with text or diagrams. Cognitive Science, 27(4), 669681.CrossRefGoogle Scholar
Bargh, J. A., & Schul, Y. (1980). On the cognitive benefits of teaching. Journal of Educational Psychology, 72(5), 593.CrossRefGoogle Scholar
Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617645.CrossRefGoogle ScholarPubMed
Bean, T. W., & Steenwyk, F. L. (1984). The effect of three forms of summarization instruction on sixth graders’ summary writing and comprehension. Journal of Reading Behavior, 16(4), 297306.CrossRefGoogle Scholar
Berthold, K., Eysink, T. H., & Renkl, A. (2009). Assisting self-explanation prompts are more effective than open prompts when learning form multiple representations. Instructional Science, 37, 345363.CrossRefGoogle Scholar
Bisra, K., Liu, Q., Nesbit, J. C., Salimi, F., & Winne, P. H. (2018). Inducing self-explanation: A meta-analysis. Educational Psychology Review, 30, 703725.CrossRefGoogle Scholar
Bobek, E., & Tversky, B. (2016). Creating visual explanations improves learning. Cognitive Research: Principles and Implications, 1(27), 114.Google ScholarPubMed
Brooks, N., & Goldin‐Meadow, S. (2016). Moving to learn: How guiding the hands can set the stage for learning. Cognitive Science, 40(7), 18311849.CrossRefGoogle ScholarPubMed
Butcher, K. R. (2006). Learning from text with diagrams: Promoting mental model development and inference generation. Journal of Educational Psychology, 98(1), 182197.CrossRefGoogle Scholar
Carbonneau, K. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the efficacy of teaching mathematics with concrete manipulatives. Journal of Educational Psychology, 105(2), 380.CrossRefGoogle Scholar
Cheng, L., & Beal, C. R. (2020). Effects of student-generated drawing and imagination on science text reading in a computer-based learning environment. Educational Technology Research and Development, 68(1), 225247.CrossRefGoogle Scholar
Chi, M. T. H. (2000). Self-explaining expository texts: The dual processes of generating inferences and repairing mental models. In Glaser, R. (ed.), Advances in Instructional Psychology (pp. 161238). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
Chi, M. T. H., Bassok, M. Lewis, M., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 18, 439477.Google Scholar
Chi, M. T. H., & Wylie, R. (2014). The ICAP framework: Linking cognitive engagement to active learning outcomes. Educational Psychologist, 49(4), 219243.CrossRefGoogle Scholar
Coleman, E. B., Brown, A. L., & Rivkin, I. D. (1997). The effect of instructional explanations on learning from scientific texts. The Journal of the Learning Sciences, 6(4), 347365.CrossRefGoogle Scholar
Colliot, T., & Jamet, É. (2018). Does self-generating a graphic organizer while reading improve students’ learning? Computers & Education, 126, 1322.CrossRefGoogle Scholar
Cook, S. W., Mitchell, Z., & Goldin-Meadow, S. (2008). Gesturing makes learning last. Cognition, 106(2), 10471058.CrossRefGoogle ScholarPubMed
Cooper, G., Tindall-Ford, S., Chandler, P., & Sweller, J. (2001). Learning by imagining. Journal of Experimental Psychology: Applied, 7, 6882.Google ScholarPubMed
Cox, R. (1999). Representation construction, externalised cognition and individual differences. Learning and Instruction, 9, 343363.CrossRefGoogle Scholar
de Bruin, A. B., Thiede, K. W., Camp, G., & Redford, J. (2011). Generating keywords improves metacomprehension and self-regulation in elementary and middle school children. Journal of Experimental Child Psychology, 109(3), 294310.CrossRefGoogle ScholarPubMed
de Koning, B. B., Tabbers, H. K., Rikers, R. M., & Paas, F. (2011). Improved effectiveness of cueing by self-explanations when learning from a complex animation. Applied Cognitive Psychology, 254, 183194.CrossRefGoogle Scholar
Du, X., & Zhang, Q. (2019). Tracing worked examples: Effects on learning in geometry. Educational Psychology, 39(2), 169187.CrossRefGoogle Scholar
Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students’ learning with effective learning techniques: Promising directions from cognitive and educational psychology. Psychological Science in the Public Interest, 14(1), 458.CrossRefGoogle ScholarPubMed
Fiorella, L., & Kuhlmann, S. (2020). Creating drawings enhances learning by teaching. Journal of Educational Psychology, 112(4), 811822.CrossRefGoogle Scholar
Fiorella, L., & Mayer, R. E. (2013). The relative benefits of learning by teaching and teaching expectancy. Contemporary Educational Psychology, 38(4), 281288.CrossRefGoogle Scholar
Fiorella, L., & Mayer, R. E. (2014). Role of expectations and explanations in learning by teaching. Contemporary Educational Psychology, 39(2), 7585.CrossRefGoogle Scholar
Fiorella, L., & Mayer, R. E. (2015). Learning As a Generative Activity. New York: Cambridge University Press.CrossRefGoogle Scholar
Fiorella, L., & Mayer, R. E. (2016a). Eight ways to promote generative learning. Educational Psychology Review, 28(4), 717741.CrossRefGoogle Scholar
Fiorella, L., & Mayer, R. E. (2016b). Effects of observing the instructor draw diagrams on learning from multimedia messages. Journal of Educational Psychology, 108(4), 528546.CrossRefGoogle Scholar
Fiorella, L., & Mayer, R. E. (2017). Spontaneous spatial strategy use in learning from scientific text. Contemporary Educational Psychology, 49, 6679.CrossRefGoogle Scholar
Fiorella, L., Stull, A. T., Kuhlmann, S., & Mayer, R. E. (2020). Fostering generative learning from video lessons: Benefits of instructor-generated drawings and learner-generated explanations. Journal of Educational Psychology, 112(5), 895906.CrossRefGoogle Scholar
Fiorella, L., & Zhang, Q. (2018). Drawing boundary conditions for learning by drawing. Educational Psychology Review, 30(3), 11151137.CrossRefGoogle Scholar
Ginns, P., Chandler, P., & Sweller, J. (2003). When imagining information is effective. Contemporary Educational Psychology, 28, 229251.CrossRefGoogle Scholar
Ginns, P., Hu, F. T., Byrne, E., & Bobis, J. (2016). Learning by tracing worked examples. Applied Cognitive Psychology, 30(2), 160169.CrossRefGoogle Scholar
Glenberg, A. M., Gutierrez, T., Levin, J. R., Japuntich, S., & Kaschak, M. P. (2004). Activity and imagined activity can enhance young children’s reading comprehension. Journal of Educational Psychology, 96(3), 424436.CrossRefGoogle Scholar
Goldin-Meadow, S., Cook, S. W., & Mitchell, Z. A. (2009). Gesturing gives children new ideas about math. Psychological Science, 20(3), 267272.CrossRefGoogle ScholarPubMed
Goldin-Meadow, S., Nusbaum, H., Kelly, S. D., & Wagner, S. (2001). Explaining math: Gesturing lightens the load. Psychological Science, 12, 516522.CrossRefGoogle ScholarPubMed
Holley, C. D., Dansereau, D. F., McDonald, B. A., Garland, J. C., & Collins, K. W. (1979). Evaluation of a hierarchical mapping technique as an aid to prose processing. Contemporary Educational Psychology, 4, 227237.CrossRefGoogle Scholar
Hoogerheide, V., Deijkers, L., Loyens, S. M., Heijltjes, A., & van Gog, T. (2016). Gaining from explaining: Learning improves from explaining to fictitious others on video, not from writing to them. Contemporary Educational Psychology, 44, 95106.CrossRefGoogle Scholar
Hoogerheide, V., Loyens, S. M., & van Gog, T. (2014). Effects of creating video-based modeling examples on learning and transfer. Learning and Instruction, 33, 108119.CrossRefGoogle Scholar
Hoogerheide, V., Renkl, A., Fiorella, L., Paas, F., & Van Gog, T. (2019). Enhancing example-based learning: Teaching on video increases arousal and improves problem-solving performance. Journal of Educational Psychology, 111(1), 4556.CrossRefGoogle Scholar
Johnson, C. I., & Mayer, R. E. (2010). Applying the self-explanation principle to multimedia learning in a computer-based game-like environment. Computers in Human Behavior, 26, 12461252.CrossRefGoogle Scholar
Kapur, M. (2014). Productive failure in learning math. Cognitive Science, 38(5), 10081022.CrossRefGoogle ScholarPubMed
King, A., Staffieri, A., & Adelgais, A. (1998). Mutual peer tutoring: Effects of structuring tutorial interaction to scaffold peer learning. Journal of Educational Psychology, 90, 134152.CrossRefGoogle Scholar
Kobayashi, K. (2019). Learning by preparing‐to‐teach and teaching: A meta‐analysis. Japanese Psychological Research, 61(3), 192203.CrossRefGoogle Scholar
Koh, A. W. L., Lee, S. C., & Lim, S. W. H. (2018). The learning benefits of teaching: A retrieval practice hypothesis. Applied Cognitive Psychology, 32(3), 401410.CrossRefGoogle Scholar
Kontra, C., Lyons, D. J., Fischer, S. M., & Beilock, S. L. (2015). Physical experience enhances science learning. Psychological Science, 26(6), 737749.CrossRefGoogle ScholarPubMed
Kurby, C. A., Magliano, J. P., Dandotkar, S., Woehrle, J., Gilliam, S., & McNamara, D. S. (2012). Changing how students process and comprehend texts with computer-based self-explanation training. Journal of Educational Computing Research, 4(4), 429459.CrossRefGoogle Scholar
Lachner, A., Ly, K. T., & Nückles, M. (2018). Providing written or oral explanations? Differential effects of the modality of explaining on students’ conceptual learning and transfer. The Journal of Experimental Education, 86(3), 344361.CrossRefGoogle Scholar
Leopold, C., & Leutner, D. (2012). Science text comprehension: Drawing, main idea selection, and summarizing as learning strategies. Learning and Instruction, 22(1), 1626.CrossRefGoogle Scholar
Leopold, C., & Mayer, R. E. (2015). An imagination effect in learning from scientific text. Journal of Educational Psychology, 107(1), 4763.CrossRefGoogle Scholar
Leopold, C., Mayer, R. E., & Dutke, S. (2019). The power of imagination and perspective in learning from science text. Journal of Educational Psychology, 111(5), 793808.CrossRefGoogle Scholar
Leopold, C., Sumfleth, E., & Leutner, D. (2013). Learning with summaries: Effects of presentation mode and type of learning activity on comprehension and transfer. Learning and Instruction, 27, 4049.CrossRefGoogle Scholar
Leutner, D., Leopold, C., & Sumfleth, E. (2009). Cognitive load and science text comprehension: Effects of drawing and mentally imagining text content. Computers in Human Behavior, 25(2), 284289.CrossRefGoogle Scholar
Lin, L., Lee, C. H., Kalyuga, S., Wang, Y., Guan, S., & Wu, H. (2017). The effect of learner-generated drawing and imagination in comprehending a science text. The Journal of Experimental Education, 85(1), 142154.CrossRefGoogle Scholar
Macken, L., & Ginns, P. (2014). Pointing and tracing gestures may enhance anatomy and physiology learning. Medical Teacher, 36(7), 596601.CrossRefGoogle ScholarPubMed
Mayer, R. E., & Johnson, C. I. (2010). Adding instructional features that promote learning in a game-like environment. Journal of Educational Computing Research, 42(3), 241265.CrossRefGoogle Scholar
McNamara, D. S. (2004). SERT: Self-explanation reading training. Discourse Processes, 38(1), 130.CrossRefGoogle Scholar
Novack, J. D. (2010). Learning, Creating, and Using Knowledge: Concept Maps As Facilitative Tools in Schools and Corporations (2nd ed.). New York: Routledge.CrossRefGoogle Scholar
Paas, F., & Sweller, J. (2012). An evolutionary upgrade of cognitive load theory: Using the human motor system and collaboration to support the learning of complex cognitive tasks. Educational Psychology Review, 24(1), 2745.CrossRefGoogle Scholar
Padalkar, S., & Hegarty, M. (2015). Models as feedback: Developing representational competence in chemistry. Journal of Educational Psychology, 107(2), 451467.CrossRefGoogle Scholar
Parong, J., & Mayer, R. E. (2018). Learning science in immersive virtual reality. Journal of Educational Psychology, 110(6), 785797.CrossRefGoogle Scholar
Pilegard, C., & Fiorella, L. (2016). Helping students help themselves: Generative learning strategies improve middle-school students’ self-regulation in a cognitive tutor. Computers in Human Behavior, 65, 121126.CrossRefGoogle Scholar
Ponce, H. R., & Mayer, R. E. (2014). An eye movement analysis of highlighting and graphic organizer study aids for learning from expository text. Computers in Human Behavior, 41, 2132.CrossRefGoogle Scholar
Ponce, H. R., Mayer, R. E., López, M. J., & Loyola, M. S. (2018). Adding interactive graphic organizers to a whole-class slideshow lesson. Instructional Science, 46(6), 973988.CrossRefGoogle Scholar
Ponce, H. R., Mayer, R. E., Loyola, M. S., & López, M. J. (2020). Study activities that foster generative Learning: Notetaking, graphic organizer, and questioning. Journal of Educational Computing Research, 58(2), 275296.CrossRefGoogle Scholar
Rau, M. A., Aleven, V., & Rummel, N. (2015). Successful learning with multiple graphical representations and self-explanation prompts. Journal of Educational Psychology, 107(1), 3046.CrossRefGoogle Scholar
Renkl, A. (1997). Learning from worked‐out examples: A study on individual differences. Cognitive Science, 21(1), 129.CrossRefGoogle Scholar
Renkl, A., Stark, R., Gruber, H., & Mandl, H. (1998). Learning from worked-out examples: The effects of example variability and elicited self-explanations. Contemporary Educational Psychology, 23, 90108.CrossRefGoogle ScholarPubMed
III Roediger, H. L., & Karpicke, J. D. (2006). Test-enhanced learning: Taking memory tests improves long-term retention. Psychological Science, 17(3), 249255.CrossRefGoogle ScholarPubMed
Roscoe, R. D. (2014). Self-monitoring and knowledge-building in learning by teaching. Instructional Science, 42(3), 327351.CrossRefGoogle Scholar
Roscoe, R. D., & Chi, M. T. (2007). Understanding tutor learning: Knowledge-building and knowledge-telling in peer tutors’ explanations and questions. Review of Educational Research, 77(4), 534574.CrossRefGoogle Scholar
Schleinschok, K., Eitel, A., & Scheiter, K. (2017). Do drawing tasks improve monitoring and control during learning from text? Learning and Instruction, 51, 1025.CrossRefGoogle Scholar
Schmidgall, S. P., Eitel, A., & Scheiter, K. (2019). Why do learners who draw perform well? Investigating the role of visualization, generation and externalization in learner-generated drawing. Learning and Instruction, 60, 138153.CrossRefGoogle Scholar
Schroeder, N. L., Nesbit, J. C., Anguiano, C. J., & Adesope, O. O. (2018). Studying and constructing concept maps: A meta-analysis. Educational Psychology Review, 30, 431455.CrossRefGoogle Scholar
Spirgel, A. S., & Delaney, P. F. (2016). Does writing summaries improve memory for text? Educational Psychology Review, 28(1), 171196.CrossRefGoogle Scholar
Stull, A. T., Gainer, M. J., & Hegarty, M. (2018). Learning by enacting: The role of embodiment in chemistry education. Learning and Instruction, 55, 8092.CrossRefGoogle Scholar
Stull, A. T., & Hegarty, M. (2016). Model manipulation and learning: Fostering representational competence with virtual and concrete models. Journal of Educational Psychology, 108(4), 509527.CrossRefGoogle Scholar
van Meter, P. (2001). Drawing construction as a strategy for learning from text. Journal of Educational Psychology, 93(1), 129.CrossRefGoogle Scholar
van Meter, P., Aleksic, M., Schwartz, A., & Garner, J. (2006). Learner-generated drawing as a strategy for learning from content area text. Contemporary Educational Psychology, 31(2), 142166.CrossRefGoogle Scholar
van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawing: Literature review and synthesis. Educational Psychology Review, 17(4), 285325.CrossRefGoogle Scholar
van Meter, P., & Firetto, C. M. (2013). Cognitive model of drawing construction. In Schraw, G., McCrudden, M. T., & Robinson, D. (eds.), Learning through Visual Displays (pp. 247280). Charlotte, NC: Information Age Publishing.Google Scholar
Wigfield, A., & Eccles, J. S. (2000). Expectancy-value theory of achievement motivation. Contemporary Educational Psychology, 25(1), 6881.CrossRefGoogle ScholarPubMed
Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625636.CrossRefGoogle ScholarPubMed
Wittrock, M. C. (1989). Generative processes of comprehension. Educational Psychologist, 24(4), 345376.CrossRefGoogle Scholar
Zhang, Q., & Fiorella, L. (2019). Role of generated and provided visuals in supporting learning from scientific text. Contemporary Educational Psychology, 59, 101808.CrossRefGoogle Scholar

References

Adesope, O. O., & Nesbit, J. C. (2010). A systematic review of research on collaborative learning with concept maps. In Torres, P. L., & Marriott, R. V. (eds.), Handbook of Research on Collaborative Learning Using Concept Mapping (pp. 238255). Hershey, PA: IGI Global.CrossRefGoogle Scholar
Adesope, O. O., & Nesbit, J. C. (2012). Verbal redundancy in multimedia learning environments: A meta-analysis. Journal of Educational Psychology, 104(1), 250263.CrossRefGoogle Scholar
Adesope, O. O., Trevisan, D. A., & Sundararajan, N. (2017). Rethinking the use of tests: A meta-analysis of practice testing. Review of Educational Research, 87, 659701.CrossRefGoogle Scholar
Basque, J., & Lavoie, M. C. (2006). Collaborative concept mapping in education: Major research trends. In Canas, A. J., & Novak, J. D. (eds.), Concept Maps: Theory, Methodology, Technology, In Proceedings of 2006 Second International Conference on Concept Mapping (pp. 7986). Costa Rica: Universidad de Costa Rica, Sección de Impresión del SIEDIN.Google Scholar
Blunt, J. R., & Karpicke, J. D. (2014). Learning with retrieval-based concept mapping. Journal of Educational Psychology, 106, 849858.CrossRefGoogle Scholar
Buzan, T (2005). The Ultimate Book of Mind Maps. London: Thorsons.Google Scholar
Chi, M. T. H. (2009). Active-constructive-interactive: A conceptual framework for differentiating learning activities. Topics in Cognitive Science, 1, 73105.CrossRefGoogle ScholarPubMed
Chi, M. T. H., Adams, J., Bogusch, E. B., Bruchok, C., Kang, S., Lancaster, M., Levy, R., Li, N., McEldoon, K. L., Stump, G. S., Wylie, R., Xu, D., & Yaghmourian, D. L. (2018). Translating the ICAP theory of cognitive engagement into practice. Cognitive Science, 42, 17771832.CrossRefGoogle Scholar
Chi, M. T. H., & Wylie, R. (2014). The ICAP framework: Linking cognitive engagement to active learning outcomes. Educational Psychologist, 49, 219243.CrossRefGoogle Scholar
Dansereau, D. F., & Dees, S. M. (2002). Mapping training: The transfer of a cognitive technology for improving counseling. Journal of Substance Abuse Treatment, 22, 219230.CrossRefGoogle ScholarPubMed
Fiorella, L., & Mayer, R. E. (2017). Spontaneous spatial strategy use in learning from scientific text. Contemporary Educational Psychology, 49, 6679.CrossRefGoogle Scholar
Fischer, F., Bruhn, J., Gräsel, C., & Mandl, H. (2002). Fostering collaborative knowledge construction with visualization tools. Learning and Instruction, 12, 213232.CrossRefGoogle Scholar
Gao, H., Shen, E., Losh, S., & Turner, J. (2007). A review of studies on collaborative concept mapping – What have we learned about the technique and what is next. Journal of Interactive Learning Research, 18, 479492.Google Scholar
Horton, P. B., McConney, A. A., Gallo, M., Woods, A. L., Senn, G. J., & Hamelin, D. (1993). An investigation of the effectiveness of concept mapping as an instructional tool. Science Education, 77, 95111.CrossRefGoogle Scholar
Johnson, D. W., & Johnson, R. T. (2009). An educational psychology success story: Social interdependence theory and cooperative learning. Educational Researcher, 38, 365379.CrossRefGoogle Scholar
Kiewra, K. A. (2005). Learn How to Study and SOAR to Success. Upper Saddle River, NJ: Pearson Prentice Hall.Google Scholar
Kirschner, F., Paas, F., & Kirschner, P. A. (2009). A cognitive load approach to collaborative learning: United brains for complex tasks. Educational Psychology Review, 21, 3142.CrossRefGoogle Scholar
Kirschner, P. A., Sweller, J., Kirschner, F., & Zambrano, R. J. (2018). From cognitive load theory to collaborative cognitive load theory. International Journal of Computer-Supported Collaborative Learning, 13, 213233.CrossRefGoogle ScholarPubMed
Maker, C. J., & Zimmerman, R. H. (2020). Concept maps as assessments of expertise: Understanding of the complexity and interrelationships of concepts in science. Journal of Advanced Academics, 31, 254297.CrossRefGoogle Scholar
Morris, C. D., Bransford, J. D., & Franks, J. J. (1977). Levels of processing versus transfer appropriate processing. Journal of Verbal Learning and Verbal Behavior, 16, 519533.CrossRefGoogle Scholar
Nesbit, J. C., & Adesope, O. O. (2006). Learning with concept and knowledge maps: A meta-analysis. Review of Educational Research, 76, 413448.CrossRefGoogle Scholar
Nesbit, J. C., & Adesope, O. O. (2013). Concept maps for learning: Theory, research, and design. In Schraw, G., McCrudden, M., & Robinson, D. (eds.), Learning through Visual Displays (pp. 303328). Charlotte, NC: Information Age Publishing.Google Scholar
Novak, J. D. (1990). Concept mapping: A useful tool for science education. Journal of Research in Science Teaching, 27, 937949.CrossRefGoogle Scholar
Novak, J. D. (2013). Concept mapping. In Hattie, J., & Anderman, E. M. (eds.), International Guide to Student Achievement (pp. 362365). New York: Routledge.Google Scholar
Novak, J. D., & Gowin, D. B. (1984). Learning How to Learn. New York: Cambridge University Press.CrossRefGoogle Scholar
Novak, J. D., & Musonda, D. (1991). A twelve-year longitudinal study of science concept learning. American Educational Research Journal, 28, 117153.CrossRefGoogle Scholar
O’Donnell, A. M., Dansereau, D. F., & Hall, R. H. (2002). Knowledge maps as scaffolds for cognitive processing. Educational Psychology Review, 14, 7186.CrossRefGoogle Scholar
Okebukola, P. A. (1990). Attaining meaningful learning of concepts in genetics and ecology: An examination of the potency of the concept-mapping technique. Journal of Research in Science Teaching, 27, 493504.CrossRefGoogle Scholar
Riahi, Z., & Pourdana, N. (2017). Effective reading comprehension in EFL contexts: Individual and collaborative concept mapping strategies. Advances in Language and Literary Studies, 8, 51.CrossRefGoogle Scholar
Ritchhart, R., Turner, T., & Hadar, L. (2009). Uncovering students’ thinking about thinking using concept maps. Metacognition and Learning, 4, 145159.CrossRefGoogle Scholar
Roessger, K. M., Daley, B. J., & Hafez, D. A. (2018). Effects of teaching concept mapping using practice, feedback, and relational framing. Learning and Instruction, 54, 1121.CrossRefGoogle Scholar
Schroeder, N. L., Nesbit, J. C., Anguiano, C. J., & Adesope, O. O. (2018). Studying and constructing concept maps: A meta-analysis. Educational Psychology Review, 30(2), 431455.CrossRefGoogle Scholar
Slotte, V., & Lonka, K. (1999). Spontaneous concept maps aiding the understanding of scientific concepts. International Journal of Science Education, 21, 515531.CrossRefGoogle Scholar
Stoyanova, N., & Kommers, P. (2002). Concept mapping as a medium of shared cognition in computer-supported collaborative problem solving. Journal of Interactive Learning Research, 13, 111133.Google Scholar
Sundararajan, N., Adesope, O., & Cavagnetto, A. (2018). The process of collaborative concept mapping in kindergarten and the effect on critical thinking skills. Journal of STEM Education, 19(1), 513.Google Scholar
Weinstein, C. E., & Mayer, R. E. (1986). The teaching of learning strategies. In Wittrock, M. C. (ed.), Handbook of Research on Teaching (3rd ed., pp. 315327). New York: Macmillan.Google Scholar
Winne, P. H., Nesbit, J. C., Ram, I., Marzouk, Z., Vytasek, J., Samadi, D., & Stewart, J. (2017). Tracing metacognition by highlighting and tagging to predict recall and transfer. AERA Online Paper Repository. Available from https://eric.ed.gov/?id=ED597072 (accessed October 1, 2020).Google Scholar
Wittrock, M. C. (1989). Generative processes of comprehension. Educational Psychologist, 24, 345376.CrossRefGoogle Scholar
Won, M., Krabbe, H., Ley, S. L., Treagust, D. F., & Fischer, H. E. (2017). Science teachers’ use of a concept map marking guide as a formative assessment tool for the concept of energy. Educational Assessment, 22, 95110.CrossRefGoogle Scholar

References

Ainsworth, S. (2010). Improving learning by drawing. In Goldman, S. R., Pellegrino, J., Gomez, K., Lyons, L., & Radinsky, J. (eds.), Learning in the Disciplines: Proceedings of the 9th International Conference of the Learning Sciences (Vol. 2, pp. 167168). Chicago, IL: International Society of the Learning Sciences.Google Scholar
Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333, 10961097.CrossRefGoogle Scholar
Alesandrini, K. L. (1981). Pictorial-verbal and analytic-holistic learning strategies in science learning. Journal of Educational Psychology, 73, 358368.CrossRefGoogle Scholar
Alesandrini, K. L. (1984). Pictures and adult learning. Instructional Science, 13, 6377.CrossRefGoogle Scholar
Cooper, M. M., Stieff, M., & DeSutter, D. (2017). Sketching the invisible to predict the visible: From drawing to modeling in chemistry. Topics in Cognitive Science, 9, 902920.CrossRefGoogle ScholarPubMed
Cromley, J. G., Du, Y., & Dane, A. P. (2020). Drawing-to-learn: Does meta-analysis show differences between technology-based drawing and paper-and-pencil drawing? Journal of Science Education and Technology, 29, 216229.CrossRefGoogle Scholar
Fiorella, L., & Kuhlmann, S. (2020). Creating drawings enhances learning by teaching. Journal of Educational Psychology, 112, 811822.CrossRefGoogle Scholar
Fiorella, L., & Mayer, R. E. (2015). Learning as a generative activity: Eight learning strategies that promote understanding. New York: Cambridge University Press.CrossRefGoogle Scholar
Fiorella, L., & Zhang, Q. (2018). Drawing boundary conditions for learning by drawing. Educational Psychology Review, 30, 11151137.CrossRefGoogle Scholar
Friedrich, L. A., Schmeck, A., Opfermann, M., & Leutner, D. (2013). Computer-based visualizations as comprehension aids for science text learning. Paper presented at the AERA Conference, April 2013, San Francisco, USA.Google Scholar
Gobert, J. D., & Clement, J. J. (1999). Effects of student-generated diagrams versus student-generated summaries on conceptual understanding of causal and dynamic knowledge in plate tectonics. Journal of Research in Science Teaching, 36, 3953.3.0.CO;2-I>CrossRefGoogle Scholar
Hellenbrand, J., Mayer, R. E., Opfermann, M., Schmeck, A., & Leutner, D. (2019). How generative drawing affects the learning process: An eye-tracking analysis. Applied Cognitive Psychology, 33, 11471164.CrossRefGoogle Scholar
Kollmer, J., Schleinschok, K., Scheiter, K., & Eitel, A. (2020). Is drawing after learning effective for metacognitive monitoring only when supported by spatial scaffolds? Instructional Science, 48, 569589.CrossRefGoogle Scholar
Leopold, C., & Leutner, D. (2012). Science text comprehension: Drawing, main idea selection, and summarizing as learning strategies. Learning and Instruction, 22, 1626.CrossRefGoogle Scholar
Leopold, C., & Leutner, D. (2015). Improving students’ science text comprehension through metacognitive self-regulation when applying learning strategies. Metacognition and Learning, 10, 313346.CrossRefGoogle Scholar
Leopold, C., Sumfleth, E., & Leutner, D. (2013). Learning with summaries: Effects of representation mode and type of learning activity on comprehension and transfer. Learning and Instruction, 27, 4049.CrossRefGoogle Scholar
Leutner, D., Leopold, C., & Sumfleth, E. (2009). Cognitive load and science text comprehension: Effects of drawing and mentally imagining text content. Computers in Human Behavior, 25, 284289.CrossRefGoogle Scholar
Leutner, D., & Opfermann, M. (2013). Selbstreguliertes Lernen mit Texten und Bildern im naturwissenschaftlichen Unterricht [Self-regulated learning with texts and pictures in science instruction]. In Fischer, H. E., & Sumfleth, E. (eds.), nwu-essen – 10 Jahre Essener Forschung zum naturwissenschaftlichen Unterricht (pp. 209249). Berlin: Logos.Google Scholar
Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? The case for guided methods of instruction. American Psychologist, 59, 1419.CrossRefGoogle ScholarPubMed
Mayer, R. E. (2009). Multimedia learning (2nd ed.). New York: Cambridge University Press.CrossRefGoogle Scholar
Pashler, H., Bain, P., Bottage, B., Graesser, A. Koedinger, K., McDaniel, M., & Metcalfe, J. (2007). Organizing instruction and study to improve student learning. Washington, DC: National Center for Educational Research.CrossRefGoogle Scholar
Rasco, R. W., Tennyson, R. D., & Boutwell, R. C. (1975). Imagery instructions and drawings in learning prose. Journal of Educational Psychology, 67, 188192.CrossRefGoogle Scholar
Scheiter, K., Schleinschok, K., & Ainsworth, S. (2017). Why sketching may aid learning from science texts: Contrasting sketching with written explanations. Topics in Cognitive Science, 9, 866882.CrossRefGoogle ScholarPubMed
Schleinschok, K., Eitel, A., & Scheiter, K. (2017). Do drawing tasks improve monitoring and control during learning from text? Learning and Instruction, 51, 1025.CrossRefGoogle Scholar
Schmeck, A. (nee Schwamborn) (2010). Visualisieren naturwissenschaftlicher Sachverhalte: Der Einsatz von vorgegebenen und selbst generierten Visualisierungen als Textverstehenshilfen beim Lernen aus naturwissenschaftlichen Sachtexten [Visualization of science text content: Using provided and learner-generated visualizations as aids for comprehension in learning from science texts] [PhD thesis]. Duisburg-Essen University: Faculty of Education. Available from https://d-nb.info/1012435024/34 (last accessed May 3, 2021).Google Scholar
Schmeck, A., Mayer, R. E., Opfermann, M., Pfeiffer, V., & Leutner, D. (2014). Drawing pictures during learning from scientific text: Testing the generative drawing effect and the prognostic drawing effect. Contemporary Educational Psychology, 39, 275286.CrossRefGoogle Scholar
Schmidgall, S. P. (2017). Drawing to learn: Investigating the role of contributing factors and instructional support for learner-generated drawing [PhD thesis]. Faculty of Mathematics and Sciences, Tübingen University.Google Scholar
Schmidgall, S. P., Eitel, A., & Scheiter, K. (2019). Why do learners who draw perform well? Investigating the role of visualization, generation, and externalization in learner-generated drawing. Learning and Instruction, 60, 138153.CrossRefGoogle Scholar
Schmidgall, S. P., Scheiter, K., & Eitel, A. (2020). Can we further improve tablet-based drawing to enhance learning? An empirical test of two types of support. Instructional Science, 48, 453474.CrossRefGoogle Scholar
Schwamborn, A., Mayer, R. E., Thillmann, H., Leopold, C., & Leutner, D. (2010). Drawing as a generative activity and drawing as a prognostic activity. Journal of Educational Psychology, 102, 872879.CrossRefGoogle Scholar
Schwamborn, A., Thillmann, H., Leopold, C., Sumfleth, E., & Leutner, D. (2010). Der Einsatz von vorgegebenen und selbst generierten Bildern als Textverstehenshilfe beim Lernen aus einem naturwissenschaftlichen Sachtext [Using presented and self-generated pictures as learning aids for learning from science text]. Zeitschrift für Pädagogische Psychologie, 24, 221233.CrossRefGoogle Scholar
Schwamborn, A., Thillmann, H., Opfermann, M., & Leutner, D. (2011). Cognitive load and instructionally supported learning with provided and learner-generated visualizations. Computers in Human Behavior, 27, 8993.CrossRefGoogle Scholar
Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer.CrossRefGoogle Scholar
Tirre, W. C., Manelis, L., & Leicht, K. (1979). The effects of imaginal and verbal strategies on prose comprehension by adults. Journal of Reading Behavior, 11, 99106.CrossRefGoogle Scholar
van Meter, P. (2001). Drawing construction as a strategy for learning from text. Journal of Educational Psychology, 69, 129140.CrossRefGoogle Scholar
van Meter, P., Aleksic, M., Schwartz, A., & Garner, J. (2006). Learner-generated drawing as a strategy for learning from content area text. Contemporary Educational Psychology, 31, 142166.CrossRefGoogle Scholar
van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawings: Literature review and synthesis. Educational Psychology Review, 12, 261312.Google Scholar
Weinstein, C. E., & Mayer, R. E. (1986). The teaching of learning strategies. In Wittrock, M. C. (ed.), Handbook of research on teaching (pp. 315327). New York: Macmillan.Google Scholar
Wittrock, M. C. (1990). Generative processes of comprehension. Educational Psychologist, 24, 345376.CrossRefGoogle Scholar
Zhang, Q., & Fiorella, L. (2019). Role of generated and provided visuals in supporting learning from scientific text. Contemporary Educational Psychology, 59, 101808.CrossRefGoogle Scholar

References

Anderson, R. C., & Kulhavy, R. W. (1972). Imagery and prose learning. Journal of Educational Psychology, 63(3), 242243.CrossRefGoogle Scholar
Atkinson, R. C. (1975). Mnemotechnics in second-language learning. American Psychologist, 30(8), 821828.CrossRefGoogle Scholar
Cheng, L., & Beal, C. R. (2020). Effects of student-generated drawing and imagination on science text reading in a computer-based learning environment. Educational Technology Research and Development, 68(1), 225247.CrossRefGoogle Scholar
Chi, M. T. H. (2000). Self-explaining expository texts. The dual processing of generating inferences and repairing mental models. Advances in Instructional Psychology, 5, 161238.Google Scholar
Clinton, V., Taylor, T., Bajpayee, S., Davison, M. L., Carlson, S. E., & Seipel, B. (2020). Inferential comprehension differences between narrative and expository texts: A systematic review and meta-analysis. Reading and Writing, 33, 22232248.CrossRefGoogle Scholar
Cohen, J. (1992). Statistical power analysis. Current Directions in Psychological Science, 1(3), 98101.CrossRefGoogle Scholar
Cooper, G., Tindall-Ford, S., Chandler, P., & Sweller, J. (2001). Learning by imagining. Journal of Experimental Psychology: Applied, 7(1), 6882.Google ScholarPubMed
de Koning, B.B., Rop, G., & Paas, F. (2020). Effects of spatial distance on the effectiveness of mental and physical integration strategies in learning from split-attention examples. Computers in Human Behavior, 110, 106379.CrossRefGoogle Scholar
de Koning, B. B., & van der Schoot, M. (2013). Becoming part of the story! Refueling the interest in visualization strategies for reading comprehension. Educational Psychology Review, 25(2), 261287.CrossRefGoogle Scholar
Denis, M. (2008). Assessing the symbolic distance effect in mental images constructed from verbal descriptions: A study of individual differences in the mental comparison of distances. Acta Psychologica, 127(1), 197210.CrossRefGoogle ScholarPubMed
Denis, M., & Cocude, M. (1992). Structural properties of visual images constructed from poorly or well-structured verbal descriptions. Memory & Cognition, 20(5), 497506.CrossRefGoogle ScholarPubMed
Denton, C. A., Enos, M., York, M. J., Francis, D. J., Barnes, M. A., Kulesz, P. A., Fletscher, J. M., & Carter, S. (2015). Text‐processing differences in adolescent adequate and poor comprehenders reading accessible and challenging narrative and informational text. Reading Research Quarterly, 50(4), 393416.CrossRefGoogle Scholar
Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students’ learning with effective learning techniques: Promising directions from cognitive and educational psychology. Psychological Science in the Public Interest, 14(1), 458.CrossRefGoogle ScholarPubMed
Fiorella, L., & Mayer, R. E. (2015). Learning As a Generative Activity: Eight Learning Strategies that Promote Understanding. New York: Cambridge University Press.CrossRefGoogle Scholar
Gambrell, L. B. (1981). Induced mental imagery and the text prediction performance of first and third graders. In Niles, J. A., & Harris, L. A. (eds.), New Inquiries in Reading Research and Instruction (pp. 131135). Rochester, NY: National Reading Conference.Google Scholar
Gambrell, L. B., & Jawitz, P. B. (1993). Mental imagery, text illustrations, and children’s story comprehension and recall. Reading Research Quarterly, 28, 265276.CrossRefGoogle Scholar
Giesen, C., & Peeck, J. (1984). Effects of imagery instruction on reading and retaining a literary text. Journal of Mental Imagery, 8, 7990.Google Scholar
Ginns, P., Chandler, P., & Sweller, J. (2003). When imagining information is effective. Contemporary Educational Psychology, 28(2), 229251.CrossRefGoogle Scholar
Glenberg, A. M., Gutierrez, T., Levin, J. R., Japuntich, S., & Kaschak, M. P. (2004). Activity and imagined activity can enhance young children’s reading comprehension. Journal of Educational Psychology, 96(3), 424436.CrossRefGoogle Scholar
Goodwin, G. P., & Johnson-Laird, P. N. (2005). Reasoning about relations. Psychological Review, 112(2), 468493.CrossRefGoogle ScholarPubMed
Gottschling, V. (2006). Visual imagery, mental models, and reasoning. In Held, C., Knauff, M., & Vosgerau, G. (eds.), Mental Models and the Mind (pp. 211235). Amsterdam: Elsevier.Google Scholar
Graesser, A. C., & McNamara, D. S. (2011). Computational analyses of multilevel discourse comprehension. Topics in Cognitive Science, 3(2), 371398.CrossRefGoogle ScholarPubMed
Hegarty, M., & Stull, A. T. (2012). Visuospatial thinking. In Holyoak, K. J., & Morrison, R. G. (eds.), Oxford Library of Psychology. The Oxford Handbook of Thinking and Reasoning (pp. 606630). Oxford: Oxford University Press.Google Scholar
Johnson-Laird, P. (2012). Inference with mental models. In Holyoak, K. J., & Morrison, R. G. (eds.), The Oxford Handbook of Thinking and Reasoning (pp. 134155). Oxford: Oxford University Press.Google Scholar
Johnson-Laird, P. N., Khemlani, S. S., & Goodwin, G. P. (2015). Logic, probability, and human reasoning. Trends in Cognitive Sciences, 19(4), 201214.CrossRefGoogle ScholarPubMed
Jones, M. S., Levin, M. E., Levin, J. R., & Beitzel, B. D. (2000). Can vocabulary-learning strategies and pair-learning formats be profitably combined? Journal of Educational Psychology, 92(2), 256262.CrossRefGoogle Scholar
Karlsson, J., van den Broek, P., Helder, A., Hickendorff, M., Koornneef, A., & van Leijenhorst, L. (2018). Profiles of young readers: Evidence from thinking aloud while reading narrative and expository texts. Learning and Individual Differences, 67, 105116.CrossRefGoogle Scholar
Knauff, M., & Johnson-Laird, P. N. (2002). Visual imagery can impede reasoning. Memory & Cognition, 30(3), 363371.CrossRefGoogle ScholarPubMed
Kosslyn, S. M., Thompson, W. L., & Ganis, G. (2006). The Case for Mental Imagery. Oxford: Oxford University Press.CrossRefGoogle Scholar
Kulhavy, R. W., & Swenson, I. (1975), Imagery instructions and the comprehension of text. British Journal of Educational Psychology, 45(1), 4751.CrossRefGoogle Scholar
Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11(1), 6599.CrossRefGoogle Scholar
Leahy, W., & Sweller, J. (2005). Interactions among the imagination, expertise reversal, and element interactivity effects. Journal of Experimental Psychology: Applied, 11(4), 266276.Google ScholarPubMed
Leopold, C., & Leutner, D. (2012). Science text comprehension: Drawing, main idea selection, and summarizing as learning strategies. Learning and Instruction, 22(1), 1626.CrossRefGoogle Scholar
Leopold, C., & Mayer, R. E. (2015). An imagination effect in learning from scientific text. Journal of Educational Psychology, 107(1), 4763.CrossRefGoogle Scholar
Leopold, C., Mayer, R. E., & Dutke, S. (2019). The power of imagination and perspective in learning from science text. Journal of Educational Psychology, 111(5), 793808.CrossRefGoogle Scholar
Leutner, D., Leopold, C., & Sumfleth, E. (2009). Cognitive load and science text comprehension: Effects of drawing and mentally imagining text content. Computers in Human Behavior, 25(2), 284289.CrossRefGoogle Scholar
Lin, L., Lee, C. H., Kalyuga, S., Wang, Y., Guan, S., & Wu, H. (2017). The effect of learner-generated drawing and imagination in comprehending a science text. The Journal of Experimental Education, 85(1), 142154,CrossRefGoogle Scholar
Mayer, R. E. (1996). Learning strategies for making sense out of expository text: The SOI model for guiding three cognitive processes in knowledge construction. Educational Psychology Review, 8(4), 357371.CrossRefGoogle Scholar
McCallum, R. D., & Moore, S. (1999). Not all imagery is created equal: The role of imagery in the comprehension of main ideas in exposition. Reading Psychology, 20(1), 2160.Google Scholar
McNamara, D., Ozuru, Y., & Floyd, R. G. (2011). Comprehension challenges in the fourth grade: The roles of text cohesion, text genre, and readers’ prior knowledge. International Electronic Journal of Elementary Education, 4(1), 229257.Google Scholar
Miccinati, J. L. (1982). The influence of a six-week imagery training program on children’s reading comprehension. Journal of Reading Behavior, 14(2), 197203.CrossRefGoogle Scholar
Oakhill, J., & Patel, S. (1991). Can imagery training help children who have comprehension problems? Journal of Research in Reading, 14(2), 106115.CrossRefGoogle Scholar
Paivio, A. (1986). Mental Representations: A Dual-Coding Approach. Oxford: Oxford University Press.Google Scholar
Pearson, J. (2019) The human imagination: The cognitive neuroscience of visual mental imagery. Nature Reviews Neuroscience, 20(10), 624634.CrossRefGoogle ScholarPubMed
Pearson, J., & Kosslyn, S. M. (2015). The heterogeneity of mental representation: Ending the imagery debate. Proceedings of the National Academy of Sciences, 112(33), 1008910092.CrossRefGoogle ScholarPubMed
Pressley, G. M. (1976). Mental imagery helps eight-year-olds remember what they read. Journal of Educational Psychology, 68(3), 355359.CrossRefGoogle Scholar
Rasco, R. W., Tennyson, R. D., & Boutwell, R. C. (1975). Imagery instructions and drawings in learning prose. Journal of Educational Psychology, 67(2), 188192.CrossRefGoogle Scholar
Rinck, M. & Denis, M. (2004). The metrics of spatial distance traversed during mental imagery. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(6), 12111218.Google ScholarPubMed
Sadoski, M., Goetz, E. T., & Fritz, J. B. (1993). Impact of concreteness on comprehensibility, interest, and memory for text: Implications for dual coding theory and text design. Journal of Educational Psychology, 85(2), 291304.CrossRefGoogle Scholar
Sadoski, M. & Paivio, A. (2013). Imagery and Text. A Dual Coding Theory of Reading and Writing. New York: Routledge.CrossRefGoogle Scholar
Schmidgall, S. P., Eitel, A., & Scheiter, K. (2019). Why do learners who draw perform well? Investigating the role of visualization, generation and externalization in learner-generated drawing. Learning and Instruction, 60, 138153.CrossRefGoogle Scholar
Spivey, M. J., & Geng, J. J. (2001). Oculomotor mechanisms activated by imagery and memory: Eye movements to absent objects. Psychological Research, 65(4), 235241.CrossRefGoogle ScholarPubMed
Wittrock, M. C. (1988). A constructive review of research on learning strategies. In Weinstein, C. E., Goetz, E. T., & Alexander, P. A. (eds.), Learning and Study Strategies: Issues in Assessment, Instruction, and Evaluation (pp. 287297). San Diego, CA: Academic Press.CrossRefGoogle Scholar

References

Ainsworth, S., Bibby, P., & Wood, D. (2002). Examining the effects of different multiple representational systems in learning primary mathematics. The Journal of the Learning Science, 11, 2561.CrossRefGoogle Scholar
Ainsworth, S., & Loizou, A. (2003). The effects of self-explaining when learning with text or diagrams. Cognitive Science, 27, 669681.CrossRefGoogle Scholar
Atkinson, R. K., Renkl, A., & Merrill, M. M. (2003). Transitioning from studying examples to solving problems: Effects of self-explanation prompts and fading worked-out steps. Journal of Educational Psychology, 95(4), 774783.CrossRefGoogle Scholar
Berthold, K., Eysink, T. H. S., & Renkl, A. (2009) Assisting self-explanation prompts are more effective than open prompts when learning with multiple representations. Instructional Science, 37(4), 345363.CrossRefGoogle Scholar
Bisra, K., Liu, Q., Nesbit, J. C., Salima, F., & Winne, P. H. (2018). Inducing self-explanation: A meta-analysis. Educational Psychology Review, 30, 703725.CrossRefGoogle Scholar
Booth, J. L., Lange, K. E., Koedinger, K. R., & Newton, K. J. (2013). Using example problems to improve student learning in algebra: Differentiating between correct and incorrect examples. Learning and Instruction, 25, 2434.CrossRefGoogle Scholar
Bråten, I., & Strømsø, H. I. (2006). Effects of personal epistemology on the understanding of multiple texts. Reading Psychology, 27, 457484.CrossRefGoogle Scholar
Britt, M. A., & Aglinskas, C. (2002). Improving students’ ability to identify and use source information. Cognition and Instruction, 20(4), 485522.CrossRefGoogle Scholar
Butcher, K. R. (2006). Learning from text with diagrams: Promoting mental model development and inference generation. Journal of Educational Psychology, 98(1), 182197.CrossRefGoogle Scholar
Calin-Jageman, R. J., & Horn Ratner, H. (2005). The role of encoding in the self-explanation effect. Cognition and Instruction, 23(4), 523543.CrossRefGoogle Scholar
Chamberland, M., & Mamede, S. (2015). Self-explanation, an instructional strategy to foster clinical reasoning in medical students. Health Professions Education, 1(1), 2433.CrossRefGoogle Scholar
Chamberland, M., St-Onge, C., Setrakian, J., Lanthier, L., Bergeron, L., Bourget, A., Mamede, S., Schmidt, H., & Rikers, R. (2011). The influence of medical students’ self-explanations on diagnostic performances. Medical Education, 45(7), 688695.CrossRefGoogle Scholar
Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8, 293332.CrossRefGoogle Scholar
Chase, C. C., Malkiewich, L., & Kumar, A. S. (2019). Learning to notice science concepts in engineering activities and transfer situations. Science Education, 103(2), 440471.CrossRefGoogle Scholar
Chi, M. T. H. (2000). Self-explaining expository texts: The dual processes of generating inferences and repairing mental models. In Glaser, R. (ed.), Advances in Instructional Psychology (pp. 161238). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
Chi, M. T. H. (2009). Active-constructive-interactive: A conceptual framework for differentiating learning activities. Topics in Cognitive Science, 1(1), 73105.CrossRefGoogle ScholarPubMed
PAIR-C: A unifying framework for explaining misconceptions. Educational Psychologist.Google Scholar
Chi, M. T. H., Adams, J., Bogusch, E. B., Bruchok, C., Kang, S., Lancaster, M., Levy, R., McEldoon, K., Stump, G. S., Wylie, R., Xu, D., & Yaghmourian, D. L. (2018). Translating the ICAP theory of cognitive engagement into practice. Cognitive Science, 42(6), 156.CrossRefGoogle Scholar
Chi, M. T. H., Bassok, M., Lewis, M. W., Reimann, P., & Glaser, R. (1989). Self-explanations: How students study and use examples in learning to solve problems. Cognitive Science, 13, 145182.CrossRefGoogle Scholar
Chi, M. T. H., de Leeuw, N., Chiu, M. H., & Lavancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439477.Google Scholar
Chi, M. T. H., & Wylie, R. (2014). The ICAP framework: Linking cognitive engagement to active learning outcomes. Educational Psychologist, 49, 219243.CrossRefGoogle Scholar
Cho, Y. H., & Lee, S. E. (2013). The role of co-explanation and self-explanation in learning from design examples of PowerPoint slides. Computers & Education, 69, 400407.CrossRefGoogle Scholar
Clark, D. B., Virk, S. S., Barnes, J., & Adams, D. M. (2016). Self-explanation and digital games: Adaptively increasing abstraction. Computers & Education, 103, 2843.CrossRefGoogle Scholar
Clark, J. M., & Paivio, A. (1991). Dual coding theory and education. Educational Psychology Review, 3(3), 149170.CrossRefGoogle Scholar
Clark, R., & Mayer, R. (2011). e-Learning and the Science of Instruction (3rd ed.). San Francisco: Pfeiffer.CrossRefGoogle Scholar
Conati, C., & VanLehn, K. (2000). Toward computer-based support of meta-cognitive skills: A computational framework to coach self-explanation. International Journal of Artificial Intelligence in Education, 11, 389415.Google Scholar
Corbett, A., Wagner, A., Lesgold, S., Ulrich, H., & Stevens, S. (2006). The impact on learning of generating vs. selecting descriptions in analyzing algebra example solutions. In Proceedings of the 7th International Conference on Learning Sciences (pp. 99105). Mahwah, NJ: Erlbaum.Google Scholar
de Bruin, A. B., Rikers, R. M., & Schmidt, H. G. (2007). The effect of self-explanation and prediction on the development of principled understanding of chess in novices. Contemporary Educational Psychology, 32(2), 188205.CrossRefGoogle Scholar
de Koning, B. B., Tabbers, H. K., Rikers, R. M., & Paas, F. (2011). Improved effectiveness of cueing by self‐explanations when learning from a complex animation. Applied Cognitive Psychology, 25(2), 183194.CrossRefGoogle Scholar
Fonseca, B., & Chi, M. T. H. (2011). Instruction based on self-explanation. In Mayer, R. E., & Alexander, P. A. (eds.), The Handbook of Research on Learning and Instruction (Vol. 36, pp. 296321). New York: Routledge.Google Scholar
Freeman, S., Eddy, S., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111, 84108415.CrossRefGoogle ScholarPubMed
Gadgil, S., Nokes-Malach, T. J., & Chi, M. T. (2012). Effectiveness of holistic mental model confrontation in driving conceptual change. Learning and Instruction, 22(1), 4761.CrossRefGoogle Scholar
Glenberg, A., & Langston, W. E. (1992). Comprehension of illustrated text: Pictures help to build mental models. Journal of Memory and Language, 31, 129151.CrossRefGoogle Scholar
Graesser, A. C., Halpern, D. F., & Hakel, M. (2007). 25 Principles of Learning. Washington, DC: Task Force on Lifelong Learning at Work and at Home. Available from www.psyc.memphis.edu/learning/whatweknow/index.shtml (last accessed March 16, 2021).Google Scholar
Griffin, T. D., Wiley, J., & Thiede, K. W. (2008). Individual differences, rereading, and self-explanation: Current processing and cue validity as constrains on metacomprehension accuracy. Memory & Cognition, 36, 93103.CrossRefGoogle Scholar
Hattie, J. A. (2009). Visible Learning: A Synthesis of 800+ Meta-Analysis on Achievement. Abingdon: Routledge.Google Scholar
Hausmann, R. G. M., van de Sande, B., & VanLehn, K. (2008) Shall we explain? Augmenting learning from intelligent tutoring systems and peer collaboration. In Woolf, B. P., Aïmeur, E., Nkambou, R., & Lajoie, S. (eds.), Intelligent Tutoring Systems. ITS 2008. Lecture Notes in Computer Science, Vol. 5091. Berlin: Springer.Google Scholar
Hegarty, M., & Just, M. (1993). Constructing mental models of machines from text and diagrams. Journal of Memory and Language, 32(6), 717742.CrossRefGoogle Scholar
Hempel, C. (1965). Aspects of Scientific Explanation. New York: Free Press.Google Scholar
Hoyos, C., & Gentner, D. (2017). Generating explanations via analogical comparison. Psychonomic Bulletin & Review, 24(5), 13641374.CrossRefGoogle ScholarPubMed
Hsu, C. Y., & Tsai, C. C. (2011). Investigating the impact of integrating self-explanation into an educational game: A pilot study. In Chang, M., Hwang, W. Y., Chen, M. P., & Muller, W. (eds.), Edutainment Technologies (pp. 250254). Taipei: Springer.Google Scholar
Johnson, C. I., & Mayer, R. E. (2010). Applying the self-explanation principle to multimedia learning in a computer-based game-like environment. Computers in Human Behavior, 26(6), 12461252.CrossRefGoogle Scholar
King, A. (1992). Comparison of self-questioning, summarizing, and notetaking review as strategies for learning from lectures. American Educational Research Journal, 29(2), 303323.CrossRefGoogle Scholar
Kramarski, B., & Dudai, V. (2009). Group-metacognitive support for online inquiry in mathematics with differential self-questioning. Journal of Educational Computing Research, 40(4), 377404.CrossRefGoogle Scholar
Kwon, K., Kumalasari, C. D., & Howland, J. L. (2001). Self-explanation prompts on problem-solving performance in an interactive learning environment. Journal of Interactive Online Learning, 10(2), 96112.Google Scholar
Legare, C. H., & Lombrozo, T. (2014). Selective effects of explanation on learning during early childhood. Journal of Experimental Child Psychology, 126, 198212.CrossRefGoogle ScholarPubMed
Lin, L., Atkinson, R. K., Savenye, W. C., & Nelson, B. C. (2016). Effects of visual cues and self-explanation prompts: Empirical evidence in a multimedia environment. Interactive Learning Environments, 24(4), 799813.CrossRefGoogle Scholar
Mastropieri, M. A., Scruggs, T. E., Spencer, V., & Fontana, J. (2003). Promoting success in high school world history: Peer tutoring versus guided notes. Learning Disabilities Research & Practice, 18, 5265.CrossRefGoogle Scholar
Mayer, R. E. (2008). Learning and Instruction (2nd ed.), Upper Saddle River, NJ: Pearson Prentice Hall.Google ScholarPubMed
Mayer, R. E., & Moreno, R. (2002). Aids to computer-based multimedia learning. Learning and Instruction, 12, 107119.CrossRefGoogle Scholar
Muldner, K., Burleson, W., & Chi, M. T. H. (2014). Learning from self-explaining emergent phenomena. In Proceedings of the International Conference of the Learning Sciences (pp. 847854). Boulder, CO: International Society of the Learning Sciences.Google Scholar
Najjar, L. (1996). Multimedia information and learning. Journal of Educational Multimedia and Hypermedia, 5(2), 129150.Google Scholar
Nathan, M., Mertz, K., & Ryan, R. (1994). Learning through self-explanation of mathematics examples: Effects of cognitive load. Presented at the Annual Meeting of the American Educational Research Association, April 4–8, New Orleans.Google Scholar
O’Neil, H. F., Chung, G. K., Kerr, D., Vendlinski, T. P., Buschang, R. E., & Mayer, R. E. (2014). Adding self-explanation prompts to an educational computer game. Computers in Human Behavior, 30, 2328.CrossRefGoogle Scholar
O’Reilly, T., Symons, S., & MacLatchy-Gaudet, H. (1998). Brief research report: A comparison of self-explanation and elaborative interrogation. Contemporary Educational Psychology, 23, 434445.CrossRefGoogle Scholar
Pashler, H., Bain, P., Bottage, B., Graesser, A., Koedinger, K., McDaniel, M., & Metcalfe, J. (2007). Organizing Instruction and Study to Improve Student Learning (NCER 2007–2004). Washington DC: National Center for Education Research, Institute of Education Sciences, U.S. Department of Education. Available from http://ncer.ed.gov (last accessed 16 February 2021)CrossRefGoogle Scholar
Pine, K. J., & Messer, D. J. (2000). The effect of explaining another’s actions on children’s implicit theories of balance. Cognition and Instruction, 18, 3552.CrossRefGoogle Scholar
Rau, M. A., Aleven, V., & Rummel, N. (2009). Intelligent tutoring systems with multiple representations and self-explanation prompts support learning of fractions. In Artificial Intelligence in Education (pp. 441448). Berlin: Springer.Google Scholar
Rau, M. A., Aleven, V., & Rummel, N. (2015). Successful learning with multiple graphical representations and self-explanation prompts. Journal of Educational Psychology, 107(1), 3046.CrossRefGoogle Scholar
Renkl, A. (2002). Worked-out examples: Instructional explanations support learning by self-explanations. Learning and Instruction, 12(5), 529556.CrossRefGoogle Scholar
Rittle-Johnson, B. (2006). Promoting transfer: Effects of self-explanation and direct instruction. Child Development, 77(1), 115.CrossRefGoogle ScholarPubMed
Roy, M., & Chi, M. T. H. (2005). Self-explanation in a multi-media context. In Mayer, R. (ed.), The Cambridge Handbook of Multimedia Learning (pp. 271286). New York: Cambridge University Press.CrossRefGoogle Scholar
Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010). A closer look at split visual attention in system and self-paced instruction in multimedia learning. Learning and Instruction, 20(2), 100110.CrossRefGoogle Scholar
Stark, R. (1999). Lernen mit Lösungsbeisplielen: Einfluss unvollständiger Lösungsbeispiele auf Beispielelaboration, Motivation and Lernerfolg [Learning by Worked-Out Examples: The Impact of Completion Tasks on Example Elaboration, Motivation and Learning Outcomes]. Bern: Huber.Google Scholar
Steffensen, M. S., Joag-Dev, C., & Anderson, R. C. (1979). A cross-cultural perspective on reading comprehension. Reading Research Quarterly, 15(1), 1029.CrossRefGoogle Scholar
Sun-Lin, H. Z., & Chiou, G. F. (2017). Effects of self-explanations and game-reward on sixth graders’ algebra variable learning. Educational Technology & Society, 20, 126137.Google Scholar
Suthers, D. D., & Hundhausen, C. D. (2003). An experimental study of the effects of representational guidance on collaborative learning processes. The Journal of the Learning Sciences, 12(2), 183218.CrossRefGoogle Scholar
van Peppen, L. M., Verkoeijen, P. P., Heijltjes, A. E., Janssen, E. M., Koopmans, D., & van Gog, T. (2018). Effects of self-explaining on learning and transfer of critical thinking skills. Frontiers in Education, 3, 100.CrossRefGoogle Scholar
VanLehn, K., Jones, R. M., & Chi, M. T. H. (1992). A model of the self-explanation effect. Journal of the Learning Sciences, 2(1), 159.CrossRefGoogle Scholar
Wiley, J., & Voss, J. F. (1996). The effects of “playing historian” on learning in history. Applied Cognitive Psychology, 10(7), 6372.3.0.CO;2-5>CrossRefGoogle Scholar
Wiley, J., & Voss, J. F. (1999). Constructing arguments from multiple sources: Tasks that promote understanding and not just memory for text. Journal of Educational Psychology, 91(2), 30.CrossRefGoogle Scholar
Williams, J. J., & Lombrozo, T. (2013). Explanation and prior knowledge interact to guide learning. Cognitive Psychology, 66(1), 5584.CrossRefGoogle ScholarPubMed
Wittwer, J., & Renkl, A. (2008). Why instructional explanations often do not work: A framework for understanding the effectiveness of instructional explanations. Educational Psychologist, 43(1), 4964.CrossRefGoogle Scholar
Wylie, R., & Chi, M. T. H. (2014). The self-explanation principle in multimedia learning. In Mayer, R. E. (ed.), The Cambridge Handbook of Multimedia Learning (2nd ed., pp. 413432). New York: Cambridge University Press.CrossRefGoogle Scholar
Wylie, R., Koedinger, K. R., & Mitamura, T. (2009). Is self-explanation always better? The effects of adding self-explanation prompts to an English grammar tutor. In Proceedings of the 31st Annual Conference of the Cognitive Science Society (pp. 13001305). Amsterdam: Cognitive Science Society.Google Scholar
Wylie, R., Sheng, M., Mitamura, T., & Koedinger, K. R. (2011). Effects of adaptive prompted self-explanation on robust learning of second language grammar. In International Conference on Artificial Intelligence in Education (pp. 588590). Berlin: Springer.CrossRefGoogle Scholar
Yeh, Y. F., Chen, M. C., Hung, P. H., & Hwang, G. J. (2010). Optimal self-explanation prompt design in dynamic multi-representational learning environments. Computers & Education, 54(4), 10891100.CrossRefGoogle Scholar

References

Aditomo, A., & Klieme, E. (2020). Forms of inquiry-based science instruction and their relations with learning outcomes: Evidence from high and low-performing education systems. International Journal of Science Education, 42, 504525.CrossRefGoogle Scholar
Aditomo, A., & Köhler, C. (2020). Do student ratings provide reliable and valid information about teaching quality at the school level? Evaluating measures of science teaching in PISA 2015. Educational Assessment, Evaluation and Accountability, 32, 275310.CrossRefGoogle Scholar
Ainsworth, S. (2014). The multiple representation principle in multimedia learning. In Mayer, R. E. (ed.), The Cambridge Handbook of Multimedia Learning (2nd ed., pp. 464486). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bell, R. L., Smetana, L., & Binns, I. (2005). Simplifying inquiry instruction. The Science Teacher, 72, 3033.Google Scholar
Belland, B. R., Walker, A. E., & Kim, N. J. (2017). A Bayesian network meta-analysis to synthesize the influence of contexts of scaffolding use on cognitive outcomes in STEM education. Review of Educational Research, 87, 10421081.CrossRefGoogle ScholarPubMed
Belland, B. R., Walker, A. E., Kim, N. J., & Lefler, M. (2017). Synthesizing results from empirical research on computer-based scaffolding in STEM education. Review of Educational Research, 87, 309344.CrossRefGoogle ScholarPubMed
Brand, C., Massey-Allard, J., Perez, S., Rummel, N., & Roll, I. (2019). What inquiry with virtual labs can learn from productive failure: A theory-driven study of students’ reflections. In Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., & Luckin, R. (eds.), Artificial intelligence in Education. AIED 2019. Lecture Notes in Computer Science (Vol. 11626, pp. 3035). Cham: Springer.Google Scholar
Bruner, J. S. (1961). The act of discovery. Harvard Educational Review, 31, 2132.Google Scholar
Cannady, M. A., Vincent-Ruz, P., Chung, J. M., & Schunn, C. D. (2019). Scientific sensemaking supports science content learning across disciplines and instructional contexts. Contemporary Educational Psychology, 59, 101802.CrossRefGoogle Scholar
Chamberlain, J. M., Lancaster, K., Parson, R., & Perkins, K. K. (2014). How guidance affects student engagement with an interactive simulation. Chemistry Education Research and Practice, 15, 628638.CrossRefGoogle Scholar
Chan, J. W. W., & Pow, J. W. C. (2020). The role of social annotation in facilitating collaborative inquiry-based learning. Computers & Education, 147, 103787.CrossRefGoogle Scholar
Chen, L., Dorn, E., Krawitz, M., Lim, C., & Mourshed, M. (2017). Drivers of Student Performance Insights from Asia. McKinsey and Company.Google Scholar
Chernikova, O., Heitzmann, N., Fink, M. C., Timothy, V., Seidel, T., Fischer, F., & DFG Research group COSIMA. (2020). Facilitating diagnostic competences in higher Education – a meta-analysis in medical and teacher Education. Educational Psychology Review, 32, 157196.CrossRefGoogle Scholar
Chi, M. T. H., & Wylie, R. (2014). The ICAP framework: Linking cognitive engagement to active learning outcomes. Educational Psychologist, 49, 219243.CrossRefGoogle Scholar
Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63, 151.CrossRefGoogle Scholar
Clark, R. C., & Mayer, R. E. (2016). E-learning and the Science of Instruction: Proven Guidelines for Consumers and Designers of Multimedia Learning. Hoboken, NJ: John Wiley & Sons.CrossRefGoogle Scholar
d’Angelo, C., Rutstein, D., Harris, C., Bernard, R., Borokhovski, E., & Haertel, G. (2014). Simulations for STEM Learning: Systematic Review and Meta-analysis. Menlo Park, CA: SRI International.Google Scholar
de Jong, T. (2006). Scaffolds for scientific discovery learning. In Elen, J., & Clark, R. E. (eds.), Dealing with Complexity in Learning Environments (pp. 107128). Amsterdam: Elsevier Science Publishers.Google Scholar
de Jong, T. (2019). Moving towards engaged learning in STEM domains; there is no simple answer, but clearly a road ahead. Journal of Computer Assisted Learning, 35, 153167.CrossRefGoogle Scholar
de Jong, T., Gillet, D., Rodríguez-Triana, M. J., Hovardas, T., Dikke, D., Doran, R., Dziabenko, O., Koslowsky, J., Korventausta, M., Law, E., Pedaste, M., Tasiopoulou, E., Vidal, G., & Zacharia, Z. C. (2021). Understanding teacher design practices for digital inquiry-based science learning: The case of Go-Lab. Educational Technology Research & Development, 69, 417444.CrossRefGoogle Scholar
de Jong, T., & Lazonder, A. W. (2014). The guided discovery principle in multimedia learning. In Mayer, R. E. (ed.), The Cambridge Handbook of Multimedia Learning (2nd ed., pp. 371390). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
de Jong, T., Lazonder, A. W., Pedaste, M., & Zacharia, Z. C. (2018). Simulations, games and modelling tools for learning. In Fischer, F., Hmelo-Silver, C. E., Goldman, S. R., & Reimann, P. (eds.), International Handbook of the Learning Sciences (pp. 241268). Abingdon: Routledge.Google Scholar
Dickler, R. (2019). An intelligent tutoring system and teacher dashboard to support mathematizing during science inquiry. In Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., & Luckin, R. (eds.), Lecture Notes in Computer Science (Vol. 11626, pp. 332338). New York: Springer International Publishing.Google Scholar
Dickler, R., Gobert, J. D., & Yasar, O. (2018). Exploring the use of eye-tracking as a method to capture student knowledge acquisition in a virtual science inquiry investigation. Hypothesis, 16, 45.Google Scholar
Eshuis, E. H., ter Vrugte, J., Anjewierden, A., Bollen, L., Sikken, J., & de Jong, T. (2019). Improving the quality of vocational students’ collaboration and knowledge acquisition through instruction and joint reflection. International Journal of Computer-Supported Collaborative Learning, 14, 5376.CrossRefGoogle Scholar
Fang, S.-C., Hsu, Y.-S., & Hsu, W. H. (2016). Effects of explicit and implicit prompts on students’ inquiry practices in computer-supported learning environments in high school earth science. International Journal of Science Education, 38, 16991726.CrossRefGoogle Scholar
Gobert, J. D., Moussavi, R., Li, H., Sao Pedro, M. A., & Dickler, R. (2018). Real time scaffolding of students’ online data interpretation during inquiry with Inq-ITS using educational datamining. In Azad, A. K. M., Auer, M., Edwards, A., & de Jong, T. (eds.), Cyber-Physical Laboratories in Engineering and Science Education (pp. 191219). Berlin: Springer.CrossRefGoogle Scholar
Hattie, J. A. C., & Donoghue, G. M. (2016). Learning strategies: A synthesis and conceptual model [Review Article]. npj Science of Learning, 1, 16013.CrossRefGoogle Scholar
Hewson, P. W., & Hewson, M. G. A. (1984). The role of conceptual conflict in conceptual change and the design of science instruction. Instructional Science, 13, 113.CrossRefGoogle Scholar
Kapici, H. O., Akcay, H., & de Jong, T. (2019). Using hands-on and virtual laboratories alone or together – Which works better for acquiring knowledge and skills? Journal of Science Education and Technology, 28, 231250.CrossRefGoogle Scholar
Kapur, M., & Bielaczyc, K. (2012). Designing for productive failure. Journal of the Learning Sciences, 21, 4583.CrossRefGoogle Scholar
Kroeze, K., van den Berg, S., Veldkamp, B., Lazonder, A. W., & de Jong, T. (2019). Automated feedback can improve hypothesis quality. Frontiers in Education, 3, 116.CrossRefGoogle Scholar
Kuang, X., Eysink, T. H. S., & de Jong, T. (2020). Effects of providing partial hypotheses as a support for simulation-based inquiry learning. Journal of Computer Assisted Learning, 36, 487501.CrossRefGoogle Scholar
Lau, K., & Lam, T. Y. (2017). Instructional practices and science performance of 10 top-performing regions in PISA 2015. International Journal of Science Education, 39, 21282149.CrossRefGoogle Scholar
Lazonder, A. W., & Harmsen, R. (2016). Meta-analysis of inquiry-based learning: Effects of guidance. Review of Educational Research, 86, 681718.CrossRefGoogle Scholar
Li, H., Gobert, J. D., & Dickler, R. (2019). Scaffolding during science inquiry. In Proceedings of the Sixth (2019) ACM Conference on Learning @ Scale (pp. 110). ACM.Google Scholar
Mavrikis, M., Geraniou, E., Gutierrez Santos, S., & Poulovassilis, A. (in press). Intelligent analysis and data visualisation for teacher assistance tools: The case of exploratory learning. British Journal of Educational Technology, 50, 29202942.CrossRefGoogle Scholar
Mayer, R. E. (2004). Should there be a three-strikes rule against pure discovery learning? American Psychologist, 59, 1419.CrossRefGoogle ScholarPubMed
National Academies of Sciences Engineering Medicine. (2019). Science and Engineering for Grades 6–12: Investigation and Design at the Center. Washington, DC: National Academies Press.Google Scholar
National Research Council. (2012). Education for Life and Work: Developing Transferable Knowledge and Skills in the 21st Century. Washington, DC: National Academies Press.Google Scholar
OECD. (2016). PISA 2015 Results (Volume II): Policies and Practices for Successful Schools. Paris: PISA, OECD Publishing.Google Scholar
Oliver, M., McConney, A., & Woods-McConney, A. (in press). The efficacy of inquiry-based instruction in science: A comparative analysis of six countries using PISA 2015. Research in Science Education. https://doi.org/10.1007/s11165–019-09901-0CrossRefGoogle Scholar
Pedaste, M., Mäeots, M., Siiman, L. A., de Jong, T., van Riesen, S. A. N., Kamp, E. T., Manoli, C. C., Zacharia, Z. C., & Tsourlidaki, E. (2015). Phases of inquiry-based learning: Definitions and inquiry cycle. Educational Research Review, 14, 4761.CrossRefGoogle Scholar
Plass, J. L., & Pawar, S. (2020). Toward a taxonomy of adaptivity for learning. Journal of Research on Technology in Education, 52, 275300.CrossRefGoogle Scholar
Rau, M. A. (2020). Comparing multiple theories about learning with physical and virtual representations: Conflicting or complementary effects? Educational Psychology Review, 32, 297325.CrossRefGoogle Scholar
Rinehart, R., Duncan, R., Chinn, C., Atkins, T., & DiBenedetti, J. (2016). Critical design decisions for successful model-based inquiry in Science classrooms. International Journal of Designs for Learning, 7, 1740.CrossRefGoogle Scholar
Roll, I., Butler, D., Yee, N., Welsh, A., Perez, S., Briseno, A., Perkins, K., & Bonn, D. (2018). Understanding the impact of guiding inquiry: The relationship between directive support, student attributes, and transfer of knowledge, attitudes, and behaviours in inquiry learning. Instructional Science, 46, 77104.CrossRefGoogle Scholar
Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58, 136153.CrossRefGoogle Scholar
Schwaighofer, M., Bühner, M., & Fischer, F. (2017). Executive functions in the context of complex learning: Malleable moderators? Frontline Learning Research, 5, 5875.CrossRefGoogle Scholar
Sergis, S., Sampson, D. G., Rodríguez-Triana, M. J., Gillet, D., Pelliccione, L., & de Jong, T. (2019). Using educational data from teaching and learning to inform teachers’ reflective educational design in inquiry-based STEM education. Computers in Human Behavior, 92, 724738.CrossRefGoogle Scholar
Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34, 13371370.CrossRefGoogle Scholar
Teig, N., Scherer, R., & Nilsen, T. (2018). More isn’t always better: The curvilinear relationship between inquiry-based teaching and student achievement in science. Learning and Instruction, 56, 2029.CrossRefGoogle Scholar
van der Graaf, J., Segers, E., & de Jong, T. (2020). Fostering integration of informational texts and virtual labs during inquiry-based learning. Contemporary Educational Psychology, 62, 101890.CrossRefGoogle Scholar
van der Meij, J., & de Jong, T. (2006). Supporting students’ learning with multiple representations in a dynamic simulation-based learning environment. Learning and Instruction, 16, 199212.CrossRefGoogle Scholar
van Riesen, S. A. N., Gijlers, H., Anjewierden, A., & de Jong, T. (2018). The influence of prior knowledge on the effectiveness of guided experiment design. International Journal of Science Education, 11, 13271344.CrossRefGoogle Scholar
Veermans, K. H., & Jaakkola, T. (2016). Reflections from research: Some considerations for the design of educational simulations (and games). In Proceedings of the 3rd Asia–Europe symposium on simulation & serious gaming (pp. 173176). New York: Association for Computing Machinery.Google Scholar
Verbert, K., Govaerts, S., Duval, E., Santos, J. L., Van Assche, F., Parra, G., & Klerkx, J. (2014). Learning dashboards: An overview and future research opportunities. Personal and Ubiquitous Computing, 18, 14991514.Google Scholar
Vuorikari, R., Punie, Y., Gomez, S. C., & van Den Brande, G. (2016). Digcomp 2.0: The Digital Competence Framework for Citizens. Update Phase 1: The Conceptual Reference Model. Luxembourg: Publications Office of the European Union.Google Scholar
Wecker, C., Rachel, A., Heran-Dörr, E., Waltner, C., Wiesner, H., & Fischer, F. (2013). Presenting theoretical ideas prior to inquiry activities fosters theory-level knowledge. Journal of Research in Science Teaching, 50, 11801206.CrossRefGoogle Scholar
Wen, C., Liu, C., Chang, H., Chang, C., Chang, M., Fan Chiang, S., Yang, C., & Hwang, F. (2020). Students’ guided inquiry with simulation and its relation to school science achievement and scientific literacy. Computers & Education, 149, 103830.CrossRefGoogle Scholar
Yannier, N., Hudson, S. E., & Koedinger, K. R. (2020). Active learning is about more than hands-on: A mixed-reality AI system to support STEM Education. International Journal of Artificial Intelligence in Education, 30, 7496.CrossRefGoogle Scholar
Zacharia, Z. C., & de Jong, T. (2014). The effects on students’ conceptual understanding of electric circuits of introducing virtual manipulatives within a physical manipulatives-oriented curriculum. Cognition and Instruction, 32, 101158.CrossRefGoogle Scholar
Zacharia, Z. C., Manoli, C., Xenofontos, N., de Jong, T., Pedaste, M., van Riesen, S. A. N., Kamp, E., Mäeots, M., Siiman, L. A., & Tsourlidaki, E. (2015). Identifying potential types of guidance for supporting student inquiry in using virtual and remote labs: A literature review. Educational Technology Research & Development, 63, 257302.CrossRefGoogle Scholar

References

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The Journal of the Learning Sciences, 4(2), 167207.CrossRefGoogle Scholar
Astwood, R. S., Van Buskirk, W. L., Cornejo, J. M., & Dalton, J. (2008). The impact of different feedback types on decision-making in simulation based training environments. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 52, pp. 20622066). Los Angeles, CA: SAGE Publications.Google Scholar
Attali, Y., & van der Kleij, F. (2017). Effects of feedback elaboration and feedback timing during computer-based practice in mathematics problem solving. Computers & Education, 110, 154169.CrossRefGoogle Scholar
Azevedo, R., & Bernard, R. M. (1995). A meta-analysis of the effects of feedback in computer-based instruction. Journal of Educational Computing Research, 13(2), 111127.CrossRefGoogle Scholar
Bangert-Drowns, R. L., Kulik, C. L. C., Kulik, J. A., & Morgan, M. (1991). The instructional effect of feedback in test-like events. Review of Educational Research, 61(2), 213238.CrossRefGoogle Scholar
Billings, D. R. (2012). Efficacy of adaptive feedback strategies in simulation-based training. Military Psychology, 24(2), 114133.CrossRefGoogle Scholar
Butler, A. C., Karpicke, J. D., & Roediger, H. L. III. (2007). The effect of type and timing of feedback on learning from multiple-choice tests. Journal of Experimental Psychology: Applied, 13(4), 273281.Google ScholarPubMed
Butler, D. L., & Winne, P. H. (1995). Feedback and self-regulated learning: A theoretical synthesis. Review of Educational Research, 65(3), 245281.CrossRefGoogle Scholar
Cameron, B., & Dwyer, F. (2005). The effect of online gaming, cognition, and feedback type in facilitating delayed achievement of different learning objectives. Journal of Interactive Learning Research, 16(3), 243258.Google Scholar
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. New York: Routledge Academic.Google Scholar
Corbalan, G., Kester, L., & van Merriënboer, J. J. G. (2009). Dynamic task selection: Effects of feedback and learner control on efficiency and motivation. Learning and Instruction, 19, 455465.CrossRefGoogle Scholar
Durlach, P. J., & Ray, J. M. (2011). Designing Adaptive Instructional Environments: Insights from Empirical Evidence (Technical Report 1297). Arlington, VA: US Army Research Institute for the Behavioral and Social Science.CrossRefGoogle Scholar
Dzikovska, M., Steinhauser, N., Farrow, E., Moore, J., & Campbell, G. (2014). BEETLE II: Deep natural language understanding and automatic feedback generation for intelligent tutoring in basic electricity and electronics. International Journal of Artificial Intelligence in Education, 24(3), 284332.CrossRefGoogle Scholar
Fiorella, L., Vogel-Walcutt, J. J., & Schatz, S. (2012). Applying the modality principle to real-time feedback and the acquisition of higher-order cognitive skills. Educational Technology Research and Development, 60, 223238.CrossRefGoogle Scholar
Frishkoff, G. A., Collins-Thompson, K., Hodges, L., & Crossley, S. (2016). Accuracy feedback improves word learning from context: Evidence from a meaning-generation task. Reading and Writing, 29(4), 609632.CrossRefGoogle Scholar
Fyfe, E. R., & Rittle-Johnson, B. (2016). Feedback both helps and hinders learning: The causal role of prior knowledge. Journal of Educational Psychology, 108(1), 8297.CrossRefGoogle Scholar
Fyfe, E. R., Rittle-Johnson, B., & DeCaro, M. S. (2012). The effects of feedback during exploratory mathematics problem solving: Prior knowledge matters. Journal of Educational Psychology, 104(4), 10941108.CrossRefGoogle Scholar
Goldberg, B., & Cannon-Bowers, J. (2015). Feedback source modality effects on training outcomes in a serious game: Pedagogical agents make a difference. Computers in Human Behavior, 52, 111.CrossRefGoogle Scholar
Golke, S., Dörfler, T., & Artelt, C. (2015). The impact of elaborated feedback on text comprehension within a computer-based assessment. Learning and Instruction, 39, 123136.CrossRefGoogle Scholar
Goodman, J. S., Wood, R. E., & Hendrickx, M. (2004). Feedback specificity, exploration, and learning. Journal of Applied Psychology, 89, 248262.CrossRefGoogle Scholar
Graesser, A. C. (2016). Conversations with AutoTutor help students learn. International Journal of Artificial Intelligence in Education, 26(1), 124132.CrossRefGoogle Scholar
Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81112.CrossRefGoogle Scholar
Heckler, A., & Mikula, B. (2016). Factors affecting learning of vector math from computer-based practice: Feedback complexity and prior knowledge. Physical Review Physics Education Research, 12, 010134.CrossRefGoogle Scholar
Johnson, C. I., Bailey, S. K. T., & Van Buskirk, W. L. (2017). Designing effective feedback messages in serious games and simulations: A research review. In Wouters, P., & van Oostendorp, H. (eds.), Instructional Techniques to Facilitate Learning and Motivation of Serious Games (pp. 119140). Cham: Springer.CrossRefGoogle Scholar
Johnson, C. I., Marraffino, M. D., Whitmer, D. E., & Bailey, S. K. T. (2019). Developing an adaptive trainer for Joint Terminal Attack Controllers. In Sottilare, R. & Schwarz, J. (eds.), Lecture Notes in Computer Science (Vol 11597, pp. 314326). Cham: Springer.Google Scholar
Johnson, C. I., Priest, H. A., Glerum, D. R., & Serge, S. R. (2013). Timing of feedback delivery in game-based training. In Proceedings of the Interservice/Industry Training, Simulation & Education Conference, Orlando, FL. Arlington, VA: National Training Systems Association.Google Scholar
Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychology Review, 19(4), 509539.CrossRefGoogle Scholar
Kalyuga, S. (2014). The expertise reversal principle in multimedia learning. In Mayer, R. E. (ed.), The Cambridge Handbook of Multimedia Learning (pp. 576597). New York: Cambridge University Press.CrossRefGoogle Scholar
Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38, 2331.CrossRefGoogle Scholar
Kluger, A. N., & DeNisi, A. (1996). The effects of feedback interventions on performance: A historical review, a meta-analysis, and a preliminary feedback intervention theory. Psychological Bulletin, 119(2), 254284.CrossRefGoogle Scholar
Kulik, J. A., & Fletcher, J. D. (2016). Effectiveness of intelligent tutoring systems: A meta-analytic review. Review of Educational Research, 86(1), 4278.CrossRefGoogle Scholar
Kulik, J. A., & Kulik, C. C. (1988). Timing of feedback and verbal learning. Review of Educational Research, 58, 7997.CrossRefGoogle Scholar
Landsberg, C. R., Astwood, R. S., Van Buskirk, W. L., Townsend, L. N., Steinhauser, N. B., & Mercado, A. D. (2012). Review of adaptive training system techniques. Military Psychology, 24, 96113.CrossRefGoogle Scholar
Lin, L., Atkinson, R. K., Christopherson, R. M., Joseph, S. S., & Harrison, C. J. (2013). Animated agents and learning: Does the type of verbal feedback they provide matter? Computers & Education, 67, 239249.CrossRefGoogle Scholar
Ma, W., Adesope, O. O., Nesbit, J. C., & Liu, Q. (2014). Intelligent tutoring systems and learning outcomes: A meta-analysis. Journal of Educational Psychology, 106(4), 901.CrossRefGoogle Scholar
Makransky, G., Mayer, R., Nøremølle, A., Cordoba, A. L., Wandall, J., & Bonde, M. (2020). Investigating the feasibility of using assessment and explanatory feedback in desktop virtual reality simulations. Educational Technology Research and Development, 68(1), 293317.CrossRefGoogle Scholar
Marraffino, M. D., Johnson, C. I., Whitmer, D. E., Steinhauser, N. B., & Clement, A. (2019). Advise when ready for game plan: Adaptive training for JTACs. In Proceedings of the Interservice/Industry, Training, Simulation, and Education Conference. Orlando, FL: National Training Systems Association.Google Scholar
Mason, B. J. & Bruning, R. (2001). Providing Feedback in Computer-based Instruction: What the Research Tells Us. Lincoln, NE: Center for Instructional Innovation, University of Nebraska-Lincoln. Available from http://dwb.unl.edu/Edit/MB/MasonBruning.html (last accessed March 11, 2013).Google Scholar
Mayer, R. E. (2020). Multimedia Learning (3rd ed.). New York: Cambridge University Press.CrossRefGoogle Scholar
Mayer, R. E., & Johnson, C. I. (2010). Adding instructional features that promote learning in a game-like environment. Journal of Educational Computing Research, 42(3), 241265.CrossRefGoogle Scholar
Mayer, R. E., & Moreno, R. (1998). A split attention effect in multimedia learning: Evidence for dual-processing systems in working memory. Journal of Educational Psychology, 90, 312230.CrossRefGoogle Scholar
Metcalfe, J., Kornell, N., & Finn, B. (2009). Delayed versus immediate feedback in children’s and adults’ vocabulary learning. Memory & Cognition, 37, 10771087.CrossRefGoogle ScholarPubMed
Moreno, R. (2004). Decreasing cognitive load for novice students: Effects of explanatory versus corrective feedback in discovery-based multimedia. Instructional Science, 32, 99113.CrossRefGoogle Scholar
Moreno, R., & Durán, R. (2004). Do multiple representations need explanations? The role of verbal guidance and individual differences in multimedia mathematics learning. Journal of Educational Psychology, 96(3), 492503.CrossRefGoogle Scholar
Moreno, R., & Mayer, R. E. (1999). Multimedia-supported metaphors for meaning making in mathematics. Cognition and Instruction, 17(3), 215248.CrossRefGoogle Scholar
Moreno, R., & Mayer, R. E. (2005). Role of guidance, reflection, and interactivity in an agent-based multimedia game. Journal of Educational Psychology, 97(1), 117128.CrossRefGoogle Scholar
Moreno, R., & Mayer, R. E. (2007). Interactive multimodal environments: Special issue on interactive multimodal environments: Contemporary issues and trends. Educational Psychology Review, 19(3), 309326.CrossRefGoogle Scholar
Moreno, R., Reisslein, M., & Ozogul, G. (2009). Optimizing worked-example instruction in electrical engineering: The role of fading and feedback during problem-solving practice. Journal of Engineering Education, 98, 8392.CrossRefGoogle Scholar
Moreno, R., & Valdez, A. (2005). Cognitive load and learning effects of having students organize pictures and words in multimedia environments: The role of student interactivity and feedback. Educational Technology Research and Development, 53(3), 3545.CrossRefGoogle Scholar
Mory, E. H. (2004). Feedback research revisited. In Jonassen, D. (ed.), Handbook of Research on Educational Communications and Technology (pp. 745783). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Mousavi, S., Low, R., & Sweller, J. (1995). Reducing cognitive load by mixing auditory and visual processing modes. Journal of Educational Psychology, 87, 319334.CrossRefGoogle Scholar
Narciss, S., & Huth, K. (2004). How to design informative tutoring feedback for multi-media learning. In Niegemann, H. M., Leutner, D., & Brunken, R. (eds.), Instructional Design for Multimedia Learning (pp. 181195). Munster, NY: Waxmann.Google Scholar
Narciss, S., Sosnovsky, S., Schnaubert, L., Andrès, E., Eichelmann, A., Goguadze, G., & Melis, E. (2014). Exploring feedback and student characteristics relevant for personalizing feedback strategies. Computers & Education, 71, 5676.CrossRefGoogle Scholar
National Academies of Sciences, Engineering, and Medicine. (2018). How People Learn II: Learners, Contexts, and Cultures. Washington, DC: National Academies Press.Google Scholar
Pashler, H., Cepeda, N. J., Wixted, J. T., & Rohrer, D. (2005). When does feedback facilitate learning of words?. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(1), 38.Google Scholar
Rivière, E., Saucier, D., Lafleur, A., Lacasse, M., & Chiniara, G. (2018). Twelve tips for efficient procedural simulation. Medical Teacher, 40(7), 743751.CrossRefGoogle ScholarPubMed
Schmidt, R. A. (1991). Frequent augmented feedback can degrade learning: Evidence and interpretations. In Requin, J., & Stelmach, G. E. (eds.), Tutorials in Motor Neuroscience (pp. 5975). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Schmidt, R. A., & Wulf, G. (1997). Continuous concurrent feedback degrades skill learning: Implications for training and simulation. Human Factors, 39, 509525.CrossRefGoogle ScholarPubMed
Serge, S. R., Priest, H. A., Durlach, P. J., & Johnson, C. I. (2013). The effects of static and adaptive performance feedback in game-based training. Computers in Human Behavior, 29(3), 11501158.CrossRefGoogle Scholar
Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research, 78(1), 153189.CrossRefGoogle Scholar
Shute, V. J., & Zapata-Rivera, D. (2008). Adaptive technologies. In Spector, J. M., Merrill, D., van Merriënboer, J., & Driscoll, M. (eds.), Handbook of Research on Educational Communications and Technology (3rd ed., pp. 277294). New York: Lawrence Erlbaum Associates.Google Scholar
Smits, M. H. S. B., Boon, J., Sluijsmans, D. M. A., & van Gog, T. (2008). Content and timing of feedback in a web-based learning environment: Effects on learning as a function of prior knowledge. Interactive Learning Environments, 16(2), 183193.CrossRefGoogle Scholar
Steenbergen-Hu, S., & Cooper, H. (2014). A meta-analysis of the effectiveness of intelligent tutoring systems on college students’ academic learning. Journal of Educational Psychology, 106(2), 331.CrossRefGoogle Scholar
Stevenson, C. E. (2017). Role of working memory and strategy-use in feedback effects on children’s progression in analogy solving: An explanatory item response theory account. International Journal of Artificial Intelligence in Education, 27(3), 393418.CrossRefGoogle Scholar
Swartout, W., Nye, B. D., Hartholt, A., Reilly, A., Graesser, A. C., VanLehn, K., Wetzel, J,, Liewer, M., Morbini, F., Morgan, B., Wang, L., Benn, G., & Rosenberg, M. (2016). Designing a personal assistant for life-long learning (PAL3). In 29th International Florida Artificial Intelligence Research Society Conference, FLAIRS 2016 (pp. 491496). Palo Alto, CA: AAAI Press.Google Scholar
Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving in learning algebra. Cognition and Instruction, 2, 5989.CrossRefGoogle Scholar
Sweller, J., van Merriënboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251296.CrossRefGoogle Scholar
Van Buskirk, W. L., Fraulini, N. W., Schroeder, B. L., Johnson, C. I., & Marraffino, M. D. (2019). Application of theory to the development of an adaptive training system for a submarine electronic warfare task. In Sottilare, R. A., & Schwarz, J. (eds.), International Conference on Human-Computer Interaction (pp. 352362). Cham: Springer.Google Scholar
van der Kleij, F. M., Feskens, R. C., & Eggen, T. J. H. M. (2015). Effects of feedback in a computer-based learning environment on students’ learning outcomes: A meta-analysis. Review of Educational Research, 85, 475511.CrossRefGoogle Scholar
Vanderwaetere, M., Desmet, P., & Clarebout, G. (2011). The contribution of learner characteristics in the development of computer-based adaptive learning environments. Computers in Human Behavior, 27, 118130.CrossRefGoogle Scholar
VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems, and other tutoring systems. Educational Psychologist, 46(4), 197221.CrossRefGoogle Scholar
Vollmeyer, R., & Rheinberg, F. (2005). A surprising effect of feedback on learning. Learning and Instruction, 15, 589602.CrossRefGoogle Scholar
What Works Clearinghouse. (2019). Using technology to support postsecondary student learning: A practice guide for colleges and university administrators, advisors, and faculty. Available from https://ies.ed.gov/ncee/wwc/Docs/PracticeGuide/wwc-using-tech-postsecondary.pdf (last accessed September 1, 2020).Google Scholar
Wisniewski, B., Zierer, K., & Hattie, J. (2020). The power of feedback revisited: A meta-analysis of educational feedback research. Frontiers in Psychology, 10, 3087.CrossRefGoogle ScholarPubMed

References

Amadieu, F., van Gog, T., Paas, F., Tricot, A., & Mariné, C. (2009). Effects of prior knowledge and concept-map structure on disorientation, cognitive load, and learning. Learning and Instruction, 19, 376386.CrossRefGoogle Scholar
Azevedo, R. (2005). Using hypermedia as a metacognitive tool for enhancing student learning? The role of self-regulated learning. Educational Psychologist, 40, 199209.CrossRefGoogle Scholar
Azevedo, R., & Cromley, J. G. (2004). Does training on self-regulated learning facilitate students’ learning with hypermedia? Journal of Educational Psychology, 96, 523535.CrossRefGoogle Scholar
Azevedo, R., Cromley, J. G., & Seibert, D. (2004). Does adaptive scaffolding facilitate students’ ability to regulate their learning with hypermedia? Contemporary Educational Psychology, 29, 344370.CrossRefGoogle Scholar
Azevedo, R., Cromley, J. G., Winters, F. I., Moos, D. C., & Greene, J. A. (2006). Using computers as metacognitive tools to foster students’ self-regulated learning. Technology, Instruction, Cognition, and Learning Journal, 3, 97104.Google Scholar
Azevedo, R., Guthrie, J. T., & Seibert, D. (2004). The role of self-regulated learning in fostering students’ conceptual understanding of complex systems with hypermedia. Journal of Educational Computing Research, 30, 87111.CrossRefGoogle Scholar
Azevedo, R., & Hadwin, A. F. (2005). Scaffolding self-regulated learning and metacognition: Implications for the design of computer-based scaffolds. Instructional Science, 33, 367379.CrossRefGoogle Scholar
Azevedo, R., Johnson, A., Chauncey, A., & Burkett, C. (2010). Self-regulated learning with MetaTutor: Advancing the science of learning with MetaCognitive tools. In Khine, M., & Saleh, I. (eds.), New Science of Learning: Computers, Cognition, and Collaboration in Education (pp. 225247). Amsterdam: Springer.CrossRefGoogle Scholar
Azevedo, R., Moos, D. C., Johnson, A. M., & Chauncey, A. D. (2010). Measuring cognitive and metacognitive regulatory processes during hypermedia learning: Issues and challenges. Educational Psychologist, 45, 210223.CrossRefGoogle Scholar
Baddeley, A. D. (2007). Working Memory, Thought and Action. Oxford: Oxford University Press.CrossRefGoogle Scholar
Bannert, M. (2006). Effects of reflection prompts when learning with hypermedia. Journal of Educational Computing Research, 4, 359375.CrossRefGoogle Scholar
Bannert, M., & Reimann, P. (2012). Supporting self-regulated hypermedia learning through prompts. Instructional Science, 40, 193211.CrossRefGoogle Scholar
Bannert, M., Sonnenberg, C., Mengelkamp, C., & Pieger, E. (2015). Short- and long-term effects of students’ self-directed metacognitive prompts on navigation behavior and learning performance. Computers in Human Behavior, 52, 293306.CrossRefGoogle Scholar
Baumeister, R. F., Muraven, M., & Tice, D. M. (2000). Ego depletion: A resource model of volition, self- regulation, and controlled processing. Social Cognition, 18, 130150.CrossRefGoogle Scholar
Betrancourt, M. (2005). The animation and interactivity principles in multimedia learning. In Mayer, R. E. (ed.), The Cambridge Handbook of Multimedia Learning (pp. 287296). New York: Cambridge University Press.CrossRefGoogle Scholar
Chen, C., & Rada, R. (1996). Interacting with hypertext: A meta-analysis of experimental studies. Human–Computer Interaction, 11, 125156.CrossRefGoogle Scholar
Chen, S. Y., Fan, J.-P., & Macredie, R. D. (2006). Navigation in hypermedia learning systems: Experts vs. novices. Computers in Human Behavior, 22, 251266.CrossRefGoogle Scholar
Chi, M. T. H., & Wylie, R. (2014). The ICAP framework: Linking cognitive engagement to active learning outcomes. Educational Psychologist, 49, 219243.CrossRefGoogle Scholar
Corbalan, G., Kester, L., & van Merriënboer, J. J. G. (2006). Towards a personalized task selection model with shared instructional control. Instructional Science, 34, 399422.CrossRefGoogle Scholar
de Bruin, A. B. H., Roelle, J., Baars, M., & EFG-MRE. (2020). Synthesizing cognitive load and self-regulation theory: A theoretical framework and research agenda. Educational Psychology Review, 32, 903915.CrossRefGoogle Scholar
Deci, E. L., & Ryan, R. M. (2000). The “what” and “why” of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 4, 227268.CrossRefGoogle Scholar
DeStefano, D., & LeFevre, J.-A. (2007). Cognitive load in hypertext reading: A review. Computers in Human Behavior, 23, 16161641.CrossRefGoogle Scholar
Dias, P., Gomes, M. J., & Correia, A. P. (1999). Disorientation in hypermedia environments: Mechanisms to support navigation. Journal of Educational Computing Research, 20, 93117.CrossRefGoogle Scholar
Dillon, A., & Gabbard, R. (1998). Hypermedia as an educational technology: A review of the quantitative research literature on learner comprehension, control, and style. Review of Educational Research, 68, 322349.CrossRefGoogle Scholar
Eitel, A., Endres, T., & Renkl, A. (2020). Self-management as a bridge between cognitive load and self-regulated learning: The illustrative case of seductive details. Educational Psychology Review, 32, 10731087.CrossRefGoogle Scholar
Gall, J. E., & Hannafin, M. J. (1994). A framework for the study of hypertext. Instructional Science, 22, 207232.CrossRefGoogle Scholar
Gerjets, P., & Scheiter, K. (2003). Goal configurations and processing strategies as moderators between instructional design and cognitive load: Evidence from hypertext-based instruction. Educational Psychologist, 38, 3341.CrossRefGoogle Scholar
Hummel, H. G. K., Nadolski, R. J., Eshuis, J., Slootmaker, A., & Storm, J. (2020). Serious game in introductory psychology for professional awareness: Optimal learner control and authenticity. British Journal of Educational Technology, 52(1), 125141.CrossRefGoogle Scholar
Jacobson, M. J., Maouri, C., Mishra, P., & Kolar, C. (1995). Learning with hypertext learning environments: Theory, design, and research. Journal of Educational Multimedia and Hypermedia, 4, 321364.Google Scholar
Johnson, A. M., Azevedo, R., & D’Mello, S. K. (2011). The temporal and dynamic nature of self-regulatory processes during independent and externally assisted hypermedia. Cognition and Instruction, 29, 471504.CrossRefGoogle Scholar
Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychology Review, 19, 509539.CrossRefGoogle Scholar
Katz, I., & Assor, A. (2007). When choice motivates and when it does not. Educational Psychology Review, 19, 429442.CrossRefGoogle Scholar
Kauffman, D. F. (2004). Self-regulated learning in web-based environments: Instructional tool designed to facilitate cognitive strategy use, metacognitive processing and motivational beliefs. Journal of Educational Computing Research, 30, 139161.CrossRefGoogle Scholar
Kennedy, G. (2004). Promoting cognition in multimedia interactivity research. Journal of Interactive Learning Research, 15, 4361.Google Scholar
Kintsch, W. (1998). Comprehension: A Paradigm for Cognition. Cambridge: Cambridge University Press.Google Scholar
Kirschner, P. A., & van Merriënboer, J. J. G. (2013). Do learners really know best? Urban legends in education. Educational Psychologist, 48, 169183.CrossRefGoogle Scholar
Lawless, K. A., Brown, S. W., Mills, R., & Mayall, H. J. (2003). Knowledge, interest, recall, and navigation: A look at hypertext processing. Journal of Literacy Research, 35, 911934.CrossRefGoogle Scholar
Lawless, K. A., & Kulikowich, J. M. (1998). Domain knowledge, interest and hypertext navigation: A study of individual differences. Journal of Educational Multimedia and Hypermedia, 7, 5169.Google Scholar
Lin, X., & Lehman, J. (1999). Supporting learning of variable control in a computer-based biology environment: Effects of promoting college students to reflect on their own thinking. Journal of Research in Science Teaching, 36, 837858.3.0.CO;2-U>CrossRefGoogle Scholar
Lowrey, W., & Kim, K. S. (2009). Online news media and advanced learning: A test of cognitive flexibility theory. Journal of Broadcasting and Electronic Media, 53, 547566.CrossRefGoogle Scholar
Lunts, E. (2002). What does the literature say about the effectiveness of learner control in computer-assisted instruction? Electronic Journal for the Integration of Technology in Education, 1, 5975.Google Scholar
Mayer, R. E. (ed.) (2014). The Cambridge Handbook of Multimedia Learning (2nd ed.). New York: Cambridge University Press.CrossRefGoogle Scholar
McDonald, S., & Stevenson, R. J. (1996). Disorientation in hypertext: The effects of three text structures on navigation performance. Applied Ergonomics, 27, 6168.CrossRefGoogle ScholarPubMed
McNamara, D. S., Kintsch, E., Songer, N. B., & Kintsch, W. (1996). Are good texts always better? Interactions of text coherence, background knowledge, and levels of understanding in learning from text. Cognition and Instruction, 14, 143.CrossRefGoogle Scholar
Metcalfe, J. (2002). Is study time allocated selectively to a region of proximal learning? Journal of Experimental Psychology: General, 131, 349363.CrossRefGoogle ScholarPubMed
Mihalca, L., Mengelkamp, C., & Schnotz, W. (2017). Accuracy of metacognitive judgments as a moderator of learner control effectiveness in problem-solving tasks. Metacognition and Learning, 12, 357379.CrossRefGoogle Scholar
Moos, D. C., & Azevedo, R. (2008). Self-regulated learning with hypermedia: The role of prior domain knowledge. Contemporary Educational Psychology, 33, 270298.CrossRefGoogle Scholar
Moos, D. C., & Marroquin, E. (2010). Multimedia, hypermedia, and hypertext: Motivation considered and reconsidered. Computers in Human Behavior, 26, 265276.CrossRefGoogle Scholar
Moreno, R. (2006). Does the modality principle hold for different media? A test of the method-affects-learning hypothesis. Journal of Computer Assisted Learning, 22, 149158.CrossRefGoogle Scholar
Moritz, J., Meyerhoff, H. S., & Schwan, S. (2020). Control over spatial representation format enhances information extraction but prevents long-term learning. Journal of Educational Psychology, 112, 148165.CrossRefGoogle Scholar
Müller, N. M., & Seufert, T. (2018). Effects of self-regulation prompts in hypermedia learning on learning performance and self-efficacy. Learning and Instruction, 58, 111.CrossRefGoogle Scholar
Nelson, T. O., & Narens, L. (1990). Metamemory: A theoretical framework and new findings. In Bower, G. (ed.), The Psychology of Learning and Motivation: Advances in Research and Theory (Vol. 26, pp. 125173). San Diego: Academic Press.Google Scholar
Niederhauser, D. S., Reynolds, R. E., Salmen, D. L., & Skolmoski, P. (2000). The influence of cognitive load on learning from hypertext. Journal of Educational Computing Research, 23, 237255.CrossRefGoogle Scholar
Niemiec, R. P., Sikorski, C., & Walberg, H. J. (1996). Learner-control effects: A review of reviews and a meta-analysis. Journal of Educational Computing Research, 15, 157174.CrossRefGoogle Scholar
Pashler, H., McDaniel, M., Rohrer, D. R., & Bjork, R. (2008). Learning styles: Concepts and evidence. Psychological Science in the Public Interest, 9, 105119.CrossRefGoogle ScholarPubMed
Patall, E. A., Cooper, H., & Robinson, J. C. (2008). The effects of choice on intrinsic motivation and related outcomes: A meta-analysis of research findings. Psychological Bulletin, 134, 270300.CrossRefGoogle ScholarPubMed
Pieger, E., & Bannert, M. (2018). Differential effects of students’ self-directed metacognitive prompts. Computers in Human Behavior, 86, 165173.CrossRefGoogle Scholar
Rey, G. D., Beege, M., Nebel, S., Wirzberger, M., Schmitt, T. H., & Schneider, S. (2019). A meta-analysis of the segmenting effect. Educational Psychology Review, 31, 389419.CrossRefGoogle Scholar
Rouet, J.-F., Levonen, J. J., Dillon, A., & Spiro, R. J. (eds.) (1996). Hypertext and Cognition. Mahwah, NJ: Erlbaum.Google Scholar
Salmerón, L., Cañas, J. J., Kintsch, W., & Fajardo, I. (2005). Reading strategies and hypertext comprehension. Discourse Processes, 40, 171191.CrossRefGoogle Scholar
Scheiter, K., & Gerjets, P. (2007). Learner control in hypermedia environments. Educational Psychology Review, 19, 285307.CrossRefGoogle Scholar
Scheiter, K., Gerjets, P., Vollmann, B., & Catrambone, R. (2009). The impact of learner characteristics on information utilization strategies, cognitive load experienced, and performance in hypermedia learning. Learning and Instruction, 19, 387401.CrossRefGoogle Scholar
Schnackenberg, H. L., Sullivan, H. J., Leader, L. F., & Jones, E. E. K. (1998). Learner preferences and achievement under differing amounts of learner practice. Educational Technology Research and Development, 46, 516.CrossRefGoogle Scholar
Schwartz, N. H., Andersen, C., Hong, N., Howard, B., & McGee, S. (2004). The influence of metacognitive skills on learners’ memory of information in a hypermedia environment. Journal of Educational Computing Research, 31, 7793.CrossRefGoogle Scholar
Shapiro, A. (2008). Hypermedia design as learner scaffolding. Educational Technology Research and Development, 56, 2944.CrossRefGoogle Scholar
Shapiro, A. M., & Niederhauser, D. S. (2004). Learning from hypertext: Research issues and findings. In Jonassen, D. H. (ed.), Handbook of Research for Educational Communications and Technology (pp. 605622). Mahwah, NJ: Lawrence Erlbaum.Google Scholar
Sonnenberg, C., & Bannert, M. (2019). Using process mining to examine the sustainability of instructional support: How stable are the effects of metacognitive prompting on self-regulatory behavior? Computers in Human Behavior, 96, 259272.CrossRefGoogle Scholar
Sorgenfrei, C., & Smolnik, S. (2016). The effectiveness of E-learning systems: A review of the empirical literature on learner control. Decision Sciences, 14, 154184.Google Scholar
Spiro, R. J., & Jehng, J.-C. (1990). Cognitive flexibility and hypertext: Theory and technology for the nonlinear and multidimensional traversal of complex subject matter. In Nix, D., & Spiro, R. J. (eds.), Cognition, Education, and Multimedia (pp. 163205). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Stark, L., Malkmus, E., Stark, R., Brünken, R., & Park, B. (2018). Learning-related emotions in multimedia learning: An application of control-value theory. Learning and Instruction, 58, 4252.CrossRefGoogle Scholar
Sweller, J. (2005). Implications of cognitive load theory for multimedia learning. In Mayer, R. E. (ed.), The Cambridge Handbook of Multimedia Learning (pp. 1930). New York: Cambridge University Press.CrossRefGoogle Scholar
Tempelaar, D. T., Rienties, B., & Nguyen, Q. (2020). Individual differences in the preference for worked examples: Lessons from an application of dispositional learning analytics. Applied Cognitive Psychology, 34, 890905.CrossRefGoogle Scholar
Thiede, K. W., Anderson, M. C. M., & Therriault, D. (2003). Accuracy of metacognitive monitoring affects learning of texts. Journal of Educational Psychology, 95, 6673.CrossRefGoogle Scholar
Thillmann, H., Künsting, J., Wirth, J., & Leutner, D. (2009). Is it merely a question of “what” to prompt or also “when” to prompt? Zeitschrift für Pädagogische Psychologie, 23, 105115.CrossRefGoogle Scholar
Valcke, M. (2002). Cognitive load: Updating the theory? Learning and Instruction, 12, 147154.CrossRefGoogle Scholar
Veenman, M. V. J., van Hout-Wolters, B. H. A. M., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition and Learning, 1, 314.CrossRefGoogle Scholar
Winne, P. H., & Hadwin, A. F. (1998). Studying as self-regulated learning. In Hacker, D. J., Dunlosky, J., & Graesser, A. C. (eds.), Metacognition in Educational Theory and Practice (pp. 277306). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Winne, P. H., & Nesbit, J. C. (2009). Supporting self-regulated learning with cognitive tools. In Hacker, D. J., Dunlosky, J., & Graesser, A. C. (eds.), Handbook of Metacognition in Education (pp. 259277). New York: Routledge.Google Scholar
Zhu, E. (1999). Hypermedia interface design: The effects of number of links and granularity of nodes. Journal of Educational Multimedia and Hypermedia, 8, 331358.