Skip to main content Accessibility help
×

Maintenance Message

Cambridge Core ecommerce is unavailable Sunday 08/12/2024 from 08:00 – 18:00 (GMT). This is due to site maintenance. We apologise for any inconvenience.

Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-08T16:52:18.782Z Has data issue: false hasContentIssue false

Part II - Rewards, Incentives, and Choice

Published online by Cambridge University Press:  15 February 2019

K. Ann Renninger
Affiliation:
Swarthmore College, Pennsylvania
Suzanne E. Hidi
Affiliation:
University of Toronto
Get access

Summary

While research on neuroscience posits that intrinsic and extrinsic incentives involve a single, common psychological process based on a reinforcement learning model (forming a “commonality view” on motivation), research in psychology has made a strong distinction between these two types of incentives (forming a “multifaceted view” on motivation), often even viewing them as competitive. Although they are not necessarily contradictory, I argue that these two meta-theoretical views have biased and prevented our comprehensive understanding of motivation and its relation to learning. I suggest ways that these different perspectives can inform each other, contributing to our broader understanding of human motivation and learning. These examples include the effects of reward on learning, the way people can transform one type of motivation to another, and a rewarding view for effort, challenge, and negative feedback. The arguments presented in this chapter underscore the vital importance of cross-disciplinary work on motivation and learning in future studies.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. E. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50(3), 507–17. doi: 10.1016/j.neuron.2006.03.036.Google Scholar
Aharon, I., Etcoff, N., Ariely, D., Chabris, C. F., O'Connor, E., & Breiter, H. C. (2001). Beautiful faces have variable reward value: fMRI and behavioral evidence. Neuron, 32(3), 537–51. doi: 10.1016/s0896-6273(01)00491-3.CrossRefGoogle ScholarPubMed
Ames, C. (1992). Achievement goals and the classroom motivational climate. In Schunk, D. H. & Meece, J. L. (Eds.), Student perceptions in the classroom (pp. 327–48). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Aoki, R., Matsumoto, M., Yomogida, Y., Izuma, K., Murayama, K., Sugiura, A., ... Adolphs, R. (2014). Social equality in the number of choice options is represented in the ventromedial prefrontal cortex. Journal of Neuroscience, 34, 6413–21.CrossRefGoogle ScholarPubMed
Aronson, E. & Mills, J. (1959). The effect of severity of initiation on liking for a group. The Journal of Abnormal and Social Psychology, 59(2), 177–81. doi: 10.1037/h0047195.Google Scholar
Atkinson, J. W. (1957). Motivational determinants of risk-taking behavior. Psychological Review, 64, 359–72.CrossRefGoogle Scholar
Balleine, B. W., Daw, N. D., & O'Doherty, J. P. (2008). Multiple forms of value learning and the function of dopamine. In Glimcher, P. W., Camerer, C. F., Poldrack, R. A., & Fehr, E. (Eds.), Neuroeconomics: Decision-making and the brain (pp. 367–88). New York, NY: Academic Press.Google Scholar
Bandura, A. (1997). Self-efficacy: The exercise of control. New York, NY: Freeman.Google Scholar
Baumeister, R. F. & Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117, 497529.Google Scholar
Berns, G. S., McClure, S. M., Pagnoni, G., & Montague, P. R. (2001). Predictability modulates human brain response to reward. Journal of Neuroscience, 21(8), 2793–8.Google Scholar
Berridge, K. C. (2001). Reward learning: Reinforcement, incentives, and expectations. The Psychology of Learning and Motivation: Advances in Research and Theory, 40, 223–78.Google Scholar
Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. Physiology & Behavior, 81, 179209.CrossRefGoogle ScholarPubMed
Bhanji, J. P. & Delgado, M. R. (2014). Perceived control influences neural responses to setbacks and promotes persistence. Neuron, 83(6), 1369–75. doi: 10.1016/j.neuron.2014.08.012.CrossRefGoogle ScholarPubMed
Bindra, D. (1974). A motivational view of learning, performance, and behavior modification. Psychological Review, 81(3), 199213. doi: 10.1037/h0036330.Google Scholar
Bolles, R. C. (1972). Reinforcement, expectancy, and learning. Psychological Review, 79, 394409.CrossRefGoogle Scholar
Botvinick, M. M., Huffstetler, S., & McGuire, J. T. (2009). Effort discounting in human nucleus accumbens. Cognitive, Affective & Behavioral Neuroscience, 9(1), 1627. doi: 10.3758/CABN.9.1.16.Google Scholar
Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Westbrook, J. A., Clement, N. J., ... Somerville, L. H. (2014). Mechanisms of motivation-cognition interaction: Challenges and opportunities. Cognitive Affective & Behavioral Neuroscience, 14(2), 443–72.Google Scholar
Burton, K. D., Lydon, J. E., D'Alessandro, D. U., & Koestner, R. (2006). The differential effects of intrinsic and identified motivation on well-being and performance: Prospective, experimental, and implicit approaches to self-determination theory. Journal of Personality and Social Psychology, 91(4), 750–62. doi: 10.1037/0022-3514.91.4.750.CrossRefGoogle ScholarPubMed
Camerer, C. F. & Hogarth, R. M. (1999). The effects of financial incentives in experiments: A review and capital-labor-production framework. Journal of Risk and Uncertainty, 19, 742.Google Scholar
Campbell-Meiklejohn, D. K., Bach, D. R., Roepstorff, A., Dolan, R. J., Frith, C. D. (2010). How the opinion of others affects our valuation of objects. Current Biology, 20(13), 1165–70. doi: 10.1016/j.cub.2010.04.055.Google Scholar
Cerasoli, C. P., Nicklin, J. M., & Ford, M. T. (2014). Intrinsic motivation and extrinsic incentives jointly predict performance: A 40-year meta-analysis. Psychological Bulletin, 140(4), 9801008. doi: 10.1037/a0035661.Google Scholar
Csikszentmihalyi, M. (1990). Flow: The psychology of optimal experience. New York, NY: Harper and Row.Google Scholar
Daniel, R. & Pollmann, S. (2010). Comparing the neural basis of monetary reward and cognitive feedback during information-integration category learning. Journal of Neuroscience, 30(1), 4755. doi: 10.1523/jneurosci.2205-09.2010.Google Scholar
Daniel, R. & Pollmann, S. (2012). Striatal activations signal prediction errors on confidence in the absence of external feedback. Neuroimage, 59(4), 3457–67. doi: 10.1016/j.neuroimage.2011.11.058.Google Scholar
Davey, C. G., Allen, N. B., Harrison, B. J., Dwyer, D. B., & Yucel, M. (2010). Being liked activates primary reward and midline self-related brain regions. Human Brain Mapping, 31(4), 660–8. doi: 10.1002/hbm.20895.Google Scholar
Daw, N. D. & Doya, K. (2006). The computational neurobiology of learning and reward. Current Opinion in Neurobiology, 16, 199204.Google Scholar
Daw, N. D., Niv, Y., & Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8(12), 1704–11. www.nature.com/neuro/journal/v8/n12/suppinfo/nn1560_S1.html.CrossRefGoogle ScholarPubMed
Dayan, P. & Niv, Y. (2008). Reinforcement learning and the brain: The good, the bad, and the ugly. Current Opinion in Neurobiology, 18(2), 185–96.Google Scholar
Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18, 105–15.CrossRefGoogle Scholar
Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125, 627–68.CrossRefGoogle ScholarPubMed
Deci, E. L. & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York, NY: Plenum.Google Scholar
Delgado, M. R., Miller, M. M., Inati, S., & Phelps, E. A. (2005). An fMRI study of reward-related probability learning. Neuroimage, 24(3), 862–73. doi: 10.1016/j.neuroimage.2004.10.002.Google Scholar
Dickinson, A. & Balleine, B. (2002). The role of learning in the operation of motivational systems. In Pashler, H. & Gallistel, R. (Eds.), Stevens’ handbook of experimental psychology: learning, motivation and emotion (Vol. 3, pp. 497534). New York, NY: John Wiley & Sons, Inc.Google Scholar
Dweck, C. S. (1999). Self-theories: Their role in motivation, personality, and development. New York, NY: Psychology Press.Google Scholar
Elliot, A. J. (2005). A conceptual history of the achievement goal construct. In Elliot, A. J. & Dweck, C. S. (Eds.), Handbook of competence and motivation (pp. 5272): New York, NY: Guilford Publications.Google Scholar
Elliot, A. J. (2008). Handbook of approach and avoidance motivation. New York, NY: Psychology Press.Google Scholar
Elliot, A. J. & Harackiewicz, J. M. (1996). Approach and avoidance achievement goals and intrinsic motivation: A mediational analysis. Journal of Personality and Social Psychology, 70, 461–75.Google Scholar
Fastrich, G. M., Kerr, T., Castel, A. D., & Murayama, K. (2018). The role of interest in memory for trivia questions: An investigation with a large-scale database. Motivation Science, 4(3), 227250. doi: http://dx.doi.org/10.1037/mot0000087.Google Scholar
Flowerday, T. & Shell, D. F. (2015). Disentangling the effects of interest and choice on learning, engagement, and attitude. Learning and Individual Differences, 40, 134–40. doi: http://dx.doi.org/10.1016/j.lindif.2015.05.003.Google Scholar
Frey, B. S. & Jegen, R. (2001). Motivation crowding theory. Journal of Economic Surveys, 15, 589611.Google Scholar
Gruber, M. J., Gelman, B. D., & Ranganath, C. (2014). States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit. Neuron, 84(2), 486–96. doi: http://dx.doi.org/10.1016/j.neuron.2014.08.060.CrossRefGoogle ScholarPubMed
Haber, S. N. & Knutson, B. (2010). The reward circuit: Linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 426. doi: 10.1038/npp.2009.129.CrossRefGoogle ScholarPubMed
Han, S., Huettel, S. A., Raposo, A., Adcock, R. A., & Dobbins, I. G. (2010). Functional significance of striatal responses during episodic decisions: Recovery or goal attainment? Journal of Neuroscience, 30(13), 4767–75. doi: 10.1523/jneurosci.3077-09.2010.Google Scholar
Harackiewicz, J. M., Manderlink, G., & Sansone, C. (1984). Rewarding pinball wizardry: Effects of evaluation and cue value on intrinsic interest. Journal of Personality and Social Psychology, 47(2), 287300.CrossRefGoogle Scholar
Hidi, S. (2016). Revisiting the role of rewards in motivation and learning: Implications of neuroscientific research. Educational Psychology Review, 28, 6193. doi: 10.1007/s10648-015-9307-5.Google Scholar
Hidi, S. & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–27. doi: http://dx.doi.org/10.1207/s15326985ep4102_4.CrossRefGoogle Scholar
Hull, C. L. (1943). Principles of behavior: An introduction to behavior theory. Oxford: Appleton-Century.Google Scholar
Izuma, K. (2012). The social neuroscience of reputation. Neuroscience Research, 72(4), 283–8. doi: 10.1016/j.neures.2012.01.003.Google Scholar
Izuma, K., Saito, D. N., & Sadato, N. (2008). Processing of social and monetary rewards in the human striatum. Neuron, 58(2), 284–94. doi: 10.1016/j.neuron.2008.03.020.Google Scholar
Jepma, M., Verdonschot, R. G., van Steenbergen, H., Rombouts, S., & Nieuwenhuis, S. (2012). Neural mechanisms underlying the induction and relief of perceptual curiosity. Frontiers in Behavioral Neuroscience, 6. doi: 10.3389/fnbeh.2012.00005.Google Scholar
Jones, R. M., Somerville, L. H., Li, J., Ruberry, E. J., Libby, V., Glover, G., ... Casey, B. J. (2011). Behavioral and neural properties of social reinforcement learning. The Journal of Neuroscience, 31(37), 13039–45. doi: 10.1523/jneurosci.2972-11.2011.Google Scholar
Kable, J. W. & Glimcher, P. W. (2009). The neurobiology of decision: Consensus and controversy. Neuron, 63(6), 733–45. doi: 10.1016/j.neuron.2009.09.003.Google Scholar
Kakade, S. & Dayan, P. (2002). Dopamine: Generalization and bonuses. Neural Networks, 15(4–6), 549–59. doi: 10.1016/s0893-6080(02)00048-5.Google Scholar
Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. T-y., & Camerer, C. F. (2009). The wick in the candle of learning: Epistemic curiosity activates reward circuitry and enhances memory. Psychological Science, 20(8), 963–73. doi: 10.1111/j.1467-9280.2009.02402.x.Google Scholar
Klasen, M., Weber, R., Kircher, T. T. J., Mathiak, K. A., & Mathiak, K. (2012). Neural contributions to flow experience during video game playing. Social Cognitive and Affective Neuroscience, 7(4), 485–95. doi: 10.1093/scan/nsr021.Google Scholar
Klein, E. D., Bhatt, R. S., & Zentall, T. R. (2005). Contrast and the justification of effort. Psychonomic Bulletin & Review, 12(2), 335–9. doi: 10.3758/bf03196381.Google Scholar
Knutson, B. & Greer, S. M. (2008). Anticipatory affect: Neural correlates and consequences for choice. Philosophical Transactions of the Royal Society B-Biological Sciences, 363(1511), 3771–86. doi: 10.1098/rstb.2008.0155.Google Scholar
Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., ... Grasby, P. M. (1998). Evidence for striatal dopamine release during a video game. Nature, 393(6682), 266–8.Google Scholar
Kool, W., McGuire, J. T., Rosen, Z. B., & Botvinick, M. M. (2010). Decision-making and the avoidance of cognitive demand. Journal of Experimental Psychology: General, 139(4), 665–82. doi: 10.1037/a0020198.Google Scholar
Kringelbach, M. L. & Berridge, K. C. (2016). Neuroscience of reward, motivation, and drive. In Kim, S., Reeve, J., & Bong, M. (Eds.), Recent developments in neuroscience research on human motivation (Advances in Motivation and Achievement, Vol. 19), pp. 2335. Bingley, UK: Emerald Group Publishing Limited.CrossRefGoogle Scholar
Leotti, L. A. & Delgado, M. R. (2011). The inherent reward of choice. Psychological Science, 10, 1310–8. doi: 10.1177/0956797611417005.Google Scholar
Leotti, L. A., Iyengar, S. S., & Ochsner, K. N. (2010). Born to choose: The origins and value of the need for control. Trends in Cognitive Sciences, 14(10), 457–63. doi: 10.1016/j.tics.2010.08.001.CrossRefGoogle ScholarPubMed
Lepper, M. R., Greene, D., & Nisbett, R. E. (1973). Undermining childrens’ intrinsic interest with extrinsic reward: Test of the “overjustification” hypothesis. Journal of Personality and Social Psychology, 28(1), 129–37.CrossRefGoogle Scholar
Levy, D. J. & Glimcher, P. W. (2012). The root of all value: A neural common currency for choice. Current Opinion in Neurobiology, 22(6), 1027–38. doi: 10.1016/j.conb.2012.06.001.Google Scholar
Lin, A., Adolphs, R., & Rangel, A. (2011). Social and monetary reward learning engage overlapping neural substrates. Social Cognitive and Affective Neuroscience, 7(3), 274–81.Google ScholarPubMed
Lipstein, R. L. & Renninger, K. A. (2007). Interest for writing: How teachers can make a difference. The English Journal, 96, 7985.Google Scholar
Locke, E. A. & Latham, G. P. (1990). A theory of goal setting & task performance. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Loewenstein, G. (1999). Because it is there: The challenge of mountaineering … for utility theory. Kyklos, 52, 315–43. doi: 10.1111/j.1467-6435.1999.tb00221.x.Google Scholar
MacTurk, R. H. & Morgan, G. A. (Eds.) (1995). Mastery motivation: Origins, conceptualizations, and applications. Norwood, NJ: Ablex.Google Scholar
Marvin, C. B. & Shohamy, D. (2016). Curiosity and reward: Valence predicts choice and information prediction errors enhance learning. Journal of Experimental Psychology: General, 145(3), 266–72. doi: 10.1037/xge0000140.Google Scholar
Mather, M. & Schoeke, A. (2011). Positive outcomes enhance incidental learning for both younger and older adults. Frontiers in Neuroscience, 5. doi: 10.3389/fnins.2011.00129.Google Scholar
McCabe, C., Harwood, J., Brouwer, S., Harmer, C. J., & Cowen, P. J. (2013). Effects of pramipexole on the processing of rewarding and aversive taste stimuli. Psychopharmacology, 228(2), 283–90. doi: 10.1007/s00213-013-3033-9.Google Scholar
McClelland, D. C., Atkinson, J. W., Clark, R. A., & Lowell, E. L. (1976). The achievement motive: Oxford: Irvington.Google Scholar
McClelland, D. C., Koestner, R., & Weinberger, J. (1989). How do self-attributed and implicit motives differ? Psychological Review, 96, 690702.Google Scholar
McDannald, M. A., Takahashi, Y. K., Lopatina, N., Pietras, B. W., Jones, J. L. & Schoenbaum, G. (2012). Model-based learning and the contribution of the orbitofrontal cortex to the model-free world. European Journal of Neuroscience, 35(7), 991–6. doi: 10.1111/j.1460-9568.2011.07982.x.Google Scholar
McGillivray, S., Murayama, K., & Castel, A. D. (2015). Thirst for knowledge: The effects of curiosity and interest on memory in younger and older adults. Psychology and Aging, 30(4), 835–41.Google Scholar
Metcalfe, J. & Kornell, N. (2005). A region of proximal learning model of study time allocation. Journal of Memory and Language, 52(4), 463–77. doi: 10.1016/j.jml.2004.12.001.Google Scholar
Montague, P. R. & Berns, G. S. (2002). Neural economics and the biological substrates of valuation. Neuron, 36, 265–84.CrossRefGoogle ScholarPubMed
Murayama, K. & Elliot, A. J. (2011). Achievement motivation and memory: Achievement goals differentially influence immediate and delayed remember–know recognition memory. Personality and Social Psychology Bulletin, 37(10), 1339–48. doi: 10.1177/0146167211410575.Google Scholar
Murayama, K., Elliot, A. J., & Friedman, R. (2012). Achievement goals and approach-avoidance motivation. In Ryan, R. M. (Ed.), Oxford handbook of motivation (pp. 191207). Oxford: Oxford University Press.Google Scholar
Murayama, K., FitzGibbon, L., & Sakaki, M. (2018). Process account of curiosity and interest: A reward learning model of knowledge acquisition. https://doi.org/10.31219/osf.io/hbcz5.Google Scholar
Murayama, K., Izuma, K., Aoki, R., & Matsumoto, K. (2016). “Your choice” motivates you in the brain: The emergence of autonomy neuroscience. In Kim, S., Reeve, J., & Bong, M. (Eds.), Recent developments in neuroscience research on human motivation (Advances in Motivation and Achievement, Vol. 19), pp. 95125. Bingley, UK: Emerald Publishing Group Limited.Google Scholar
Murayama, K. & Kitagami, S. (2014). Consolidation power of extrinsic rewards: Reward cues enhance long-term memory for irrelevant past events. Journal of Experimental Psychology: General, 143, 1520.Google Scholar
Murayama, K., Kitagami, S., Tanaka, A., & Raw, J. A. (2016). People's naiveté about how extrinsic rewards influence intrinsic motivation. Motivation Science, 2(3), 138–42. doi: https://doi.org/10.1037/mot0000040.Google Scholar
Murayama, K., Matsumoto, M., Izuma, K., & Matsumoto, K. (2010). Neural basis of the undermining effect of monetary reward on intrinsic motivation. PNAS Proceedings of the National Academy of Sciences of the United States of America, 107(49), 20911–16.Google Scholar
Murayama, K., Matsumoto, M., Izuma, K., Sugiura, A., Ryan, R. M., Deci, E. L., & Matsumoto, K. (2015). How self-determined choice facilitates performance: A key role of the ventromedial prefrontal cortex. Cerebral Cortex, 25(5), 1241–51. doi: 10.1093/cercor/bht317.Google Scholar
Murayama, K., Pekrun, R., Lichtenfeld, S., & vom Hofe, R. (2013). Predicting long-term growth in students' mathematics achievement: The unique contributions of motivation and cognitive strategies. Child Development, 84(4), 1475–90. doi: 10.1111/cdev.12036.Google Scholar
Murray, H. A. (1938). Explorations in personality. New York, NY: Oxford University Press.Google Scholar
Murty, V. P. & Adcock, R. A. (2014). Enriched encoding: Reward motivation organizes cortical networks for hippocampal detection of unexpected events. Cerebral Cortex, 24(8), 2160–8. doi: 10.1093/cercor/bht063.Google Scholar
Murty, V. P., DuBrow, S., & Davachi, L. (2015). The simple act of choosing influences declarative memory. The Journal of Neuroscience, 35(16), 6255–64.Google Scholar
Niv, Y., Joel, D., & Dayan, P. (2006). A normative perspective on motivation. Trends in Cognitive Sciences, 10, 375–81.Google Scholar
Niv, Y. & Schoenbaum, G. (2008). Dialogues on prediction errors. Trends in Cognitive Sciences, 12(7), 265–72. doi: 10.1016/j.tics.2008.03.006.Google Scholar
O'Doherty, J., Kringelbach, M. L., Rolls, E. T., Hornak, J., & Andrews, C. (2001). Abstract reward and punishment representations in the human orbitofrontal cortex. Nature Neuroscience, 4, 95102.Google Scholar
O'Doherty, J. P. (2004). Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14, 769–76.Google Scholar
Oudeyer, P. Y., Gottlieb, J., & Lopes, M. (2016). Intrinsic motivation, curiosity, and learning: Theory and applications in educational technologies. In Bettina, S. & Stefan, K. (Eds.), Progress in brain research (Vol. 229, pp. 257–84). Amsterdam, Netherlands: Elsevier.Google Scholar
Oudeyer, P.-Y. & Kaplan, F. (2009). What is intrinsic motivation? A typology of computational approaches. Frontiers in Neurorobotics, 1. doi: 10.3389/neuro.12.006.2007.Google Scholar
Pearce, M. T., Zaidel, D. W., Vartanian, O., Skov, M., Leder, H., Chatterjee, A., & Nadal, M. (2016). Neuroaesthetics. Perspectives on Psychological Science, 11(2), 265–79. doi: 10.1177/1745691615621274.Google Scholar
Pintrich, P. R. & Schunk, D. H. (2002). Motivation in education: Theory, research, and applications (2nd ed.). Columbus, OH: Merrill-Prentice Hall.Google Scholar
Rangel, A. & Hare, T. (2010). Neural computations associated with goal-directed choice. Current Opinion in Neurobiology, 20(2), 262–70. doi: 10.1016/j.conb.2010.03.001.Google Scholar
Reeve, J. & Lee, W. (2012). Neuroscience and human motivation. In Ryan, R. M. (Ed.), The Oxford handbook of human motivation (pp. 365–80). Oxford: Oxford University Press.Google Scholar
Reeve, J., Nix, G., & Hamm, D. (2003). Testing models of the experience of selfdetermination in intrinsic motivation and the conundrum of choice. Journal of Educational Psychology, 95, 375–92.Google Scholar
Renninger, K. A. & Hidi, S. (2016). The power of interest for motivation and engagement. New York, NY: Routledge.Google Scholar
Rotter, J. B. (1966). Generalized expectancies for internal versus external control of reinforcement. Psychological Monographs: General & Applied, 80(1), 128.Google Scholar
Rushworth, M. F. S., Mars, R. B., & Summerfield, C. (2009). General mechanisms for making decisions? Current Opinion in Neurobiology, 19(1), 7583.Google Scholar
Ryan, R. M. & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25, 5467.Google Scholar
Ryan, R. M., Mims, V., & Koestner, R. (1983). Relation of reward contingency and interpersonal context to intrinsic motivation: A review and test using cognitive evaluation theory. Journal of Personality and Social Psychology, 45(4), 736–50. doi: 10.1037/0022-3514.45.4.736.Google Scholar
Salimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257355. doi: 10.1038/nn.2726.Google Scholar
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–9. doi: 10.1126/science.275.5306.1593.Google Scholar
Sedikides, C. & Strube, M. J. (1997). Self-evaluation: To thine own self be good, to thine own self be sure, to thine own self be better. Advances in Experimental Social Psychology, 29, 209–69.Google Scholar
Seymour, B. & McClure, S. M. (2008). Anchors, scales and the relative coding of value in the brain. Current Opinion in Neurobiology, 18(2), 173–8. doi: 10.1016/j.conb.2008.07.010.Google Scholar
Shohamy, D. (2011). Learning and motivation in the human striatum. Current Opinion in Neurobiology, 21(3), 408–14. doi: 10.1016/j.conb.2011.05.009.Google Scholar
Shohamy, D. & Adcock, R. A. (2010). Dopamine and adaptive memory. Trends in Cognitive Sciences, 14(10), 464–72. doi: 10.1016/j.tics.2010.08.002.Google Scholar
Skinner, E. A. (1996). A guide to constructs of control. Journal of Personality and Social Psychology, 71, 549–70.Google Scholar
Spaniol, J., Schain, C., & Bowen, H. J. (2014). Reward-enhanced memory in younger and older adults. Journals of Gerontology Series B-Psychological Sciences and Social Sciences, 69(5), 730–40. doi: 10.1093/geronb/gbt044.Google Scholar
Sutton, R. S. & Barto, A. G. (1998). Reinforcement learning. Cambridge, MA: MIT Press.Google Scholar
Tanaka, A. & Murayama, K. (2014). Within-person analyses of situational interest and boredom: Interactions between task-specific perceptions and achievement goals. Journal of Educational Psychology, 106, 1122–34.Google Scholar
Tang, S. H. & Hall, V. C. (1995). The overjustification effect – a metaanalysis. Applied Cognitive Psychology, 9(5), 365404. doi: 10.1002/acp.2350090502.Google Scholar
Tricomi, E., Delgado, M. R., McCandliss, B. D., McClelland, J. L., & Fiez, J. A. (2006). Performance feedback drives caudate activation in a phonological learning task. Journal of Cognitive Neuroscience, 18(6), 1029–43. doi: 10.1162/jocn.2006.18.6.1029.Google Scholar
Valentin, V. V. & O'Doherty, J. P. (2009). Overlapping prediction errors in dorsal striatum during instrumental learning with juice and money reward in the human brain. Journal of Neurophysiology, 102(6), 3384–91. doi: 10.1152/jn.91195.2008.Google Scholar
Vansteenkiste, M., Simons, J., Lens, W., Soenens, B., & Matos, L. (2005). Examining the motivational impact of intrinsic versus extrinsic goal framing and autonomy-supportive versus internally controlling communication style on early adolescents' academic achievement. Child Development, 76(2), 483501.Google Scholar
Westbrook, A., Kester, D., & Braver, T. S. (2013). What is the subjective cost of cognitive effort? Load, trait, and aging effects revealed by economic preference. PLoS One, 8(7), e68210. doi: 10.1371/journal.pone.0068210.Google Scholar
Wiersma, U. J. (1992). The effects of extrinsic rewards in intrinsic motivation – a metaanalysis. Journal of Occupational and Organizational Psychology, 65, 101–14.Google Scholar
Wittmann, B. C., Schott, B. H., Guderian, S., Frey, J. U., Heinze, H. J., & Duzel, E. (2005). Reward-related fMRI activation of dopaminergic midbrain is associated with enhanced hippocampus-dependent long-term memory formation. Neuron, 45(3), 459–67. doi: 10.1016/j.neuron.2005.01.010.Google Scholar
Woolley, K. & Fishbach, A. (2016). For the fun of it: Harnessing immediate rewards to increase persistence in long-term goals. Journal of Consumer Research, 42(6), 952–66. doi: 10.1093/jcr/ucv098.Google Scholar

References

Anselme, P. (2013). Dopamine, motivation, and the evolutionary significance of gambling-like behaviour. Behavioural Brain Research, 256 C, 14. doi: 10.1016/j.bbr.2013.07.039.Google Scholar
Anselme, P. (2015). Incentive salience attribution under reward uncertainty: A Pavlovian model. Behavioural Processes, 111, 618. doi: 10.1016/j.beproc.2014.10.016.Google Scholar
Anselme, P. (2016). Motivational control of sign-tracking behaviour: A theoretical framework. Neuroscience and Biobehavioral Reviews, 65, 120. doi: 10.1016/j.neubiorev.2016.03.014.Google Scholar
Anselme, P., Robinson, M. J. F., & Berridge, K. C. (2013). Reward uncertainty enhances incentive salience attribution as sign-tracking. Behavioural Brain Research, 238, 5361. doi: 10.1016/j.bbr.2012.10.006.Google Scholar
Archer, J. (1988). The behavioural biology of aggression. Cambridge University Press Archive.Google Scholar
Avena, N. M. & Hoebel, B. G. (2003a). A diet promoting sugar dependency causes behavioral cross-sensitization to a low dose of amphetamine. Neuroscience, 122(1), 1720.Google Scholar
Avena, N. M. & Hoebel, B. G. (2003b). Amphetamine-sensitized rats show sugar-induced hyperactivity (cross-sensitization) and sugar hyperphagia. Pharmacology, Biochemistry, and Behavior, 74(3), 635–9.Google Scholar
Baillargeon, R. (1987). Object permanence in 3½- and 4½-month-old infants. Developmental Psychology, 23(5), 655–64.Google Scholar
Bartlett, E., Hallin, A., Chapman, B., & Angrist, B. (1997). Selective sensitization to the psychosis-inducing effects of cocaine: a possible marker for addiction relapse vulnerability? Neuropsychopharmacology, 16(1), 7782. doi: 10.1016/S0893-133X(96)00164-9.Google Scholar
Belayachi, S., Majerus, S., Gendolla, G., Salmon, E., Peters, F., & Van der Linden, M. (2015). Are the carrot and the stick the two sides of same coin? A neural examination of approach/avoidance motivation during cognitive performance. Behavioural Brain Research, 293, 217–26. doi: 10.1016/j.bbr.2015.07.042.Google Scholar
Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. Physiology & Behavior, 81(2), 179209. doi: 10.1016/j.physbeh.2004.02.004.Google Scholar
Berridge, K. C. (2007). The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology, 191(3), 391431. doi: 10.1007/s00213-006-0578-x.Google Scholar
Berridge, K. C. (2012). From prediction error to incentive salience: mesolimbic computation of reward motivation. European Journal of Neuroscience, 35(7), 1124–43. doi: 10.1111/j.1460-9568.2012.07990.x.Google Scholar
Berridge, K. C. & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28(3), 309–69.Google Scholar
Bindra, D. (1976). A theory of intelligent behavior. Oxford: Wiley-Interscience.Google Scholar
Bodor, J. N., Rice, J. C., Farley, T. A., Swalm, C. M., & Rose, D. (2010). The association between obesity and urban food environments. Journal of Urban Health, 87(5), 771–81. doi: 10.1007/s11524-010-9460-6.Google Scholar
Boileau, I., Payer, D., Chugani, B., Lobo, D. S., Houle, S., Wilson, A. A., ... Zack, M. (2013). In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: A positron emission tomography study with [11C]-(+)-PHNO. Molecular Psychiatry, 19(12), 1305–13. doi: 10.1038/mp.2013.163.Google Scholar
Bolles, R. C. (1972). Reinforcement, expectancy, and learning. Psychological Review, 79(5), 394409.Google Scholar
Burns, M. & Domjan, M. (1996). Sign tracking versus goal tracking in the sexual conditioning of male Japanese quail (Coturnix japonica). Journal of Experimental Psychology Animal Behavior Processes, 22(3), 297306. doi: 10.1037/0097-7403.22.3.297.Google Scholar
Cannon, C. M. & Bseikri, M. R. (2004). Is dopamine required for natural reward? Physiology & Behavior, 81(5), 741–8. doi: 10.1016/j.physbeh.2004.04.020.Google Scholar
Chase, H. W. & Clark, L. (2010). Gambling severity predicts midbrain response to near miss outcomes. Journal of Neuroscience, 30(18), 6180–7. doi: 10.1523/JNEUROSCI.5758-09.2010.Google Scholar
Clark, L., Lawrence, A. J., Astley-Jones, F., & Gray, N. (2009). Gambling near-misses enhance motivation to gamble and recruit win-related brain circuitry. Neuron, 61(3), 481–90. doi: 10.1016/j.neuron.2008.12.031.Google Scholar
Collins, L. & Pearce, J. M. (1985). Predictive accuracy and the effects of partial reinforcement on serial autoshaping. Journal of Experimental Psychology: Animal Behavior Processes, 11, 548–64.Google Scholar
Collins, L., Young, D. B., Davies, K., & Pearce, J. M. (1983). The influence of partial reinforcement on serial autoshaping with pigeons. The Quarterly Journal of Experimental Psychology B, Comparative and Physiological Psychology, 35(4), 275–90. doi: 10.1080/14640748308400893.Google Scholar
Costikyan, G. (2013). Uncertainty in games. Cambridge: MIT Press.Google Scholar
Cousins, M. S., Sokolowski, J. D., & Salamone, J. D. (1993). Different effects of nucleus accumbens and ventrolateral striatal dopamine depletions on instrumental response selection in the rat. Pharmacology, Biochemistry, and Behavior, 46(4), 943–51.Google Scholar
Crespi, L. P. (1942). Quantitative variation of incentive and performance in the white rat. The American Journal of Psychology, 55(4), 467517. doi: 10.2307/1417120?ref=search-gateway:18b91fd28dc7c135471d0d97bddee0b1.Google Scholar
Cresswell, W. (2003). Testing the mass-dependent predation hypothesis: In European blackbirds poor foragers have higher overwinter body reserves. Animal Behaviour, 65, 1035–44.Google Scholar
D'Souza, M. S. & Duvauchelle, C. L. (2008). Certain or uncertain cocaine expectations influence accumbens dopamine responses to self-administered cocaine and non-rewarded operant behavior. European Neuropsychopharmacology, 18(9), 628–38. doi: 10.1016/j.euroneuro.2008.04.005.Google Scholar
de Lafuente, V. & Romo, R. (2011). Dopamine neurons code subjective sensory experience and uncertainty of perceptual decisions. Proceedings of the National Academy of Sciences of the United States of America, 108(49), 19767–71. doi: 10.1073/pnas.1117636108.Google Scholar
Dodd, M. L., Klos, K. J., Bower, J. H., Geda, Y. E., Josephs, K. A., & Ahlskog, J. E., (2005). Pathological gambling caused by drugs used to treat Parkinson disease. Archives of Neurology, 62(9), 1377–81. doi: 10.1001/archneur.62.9.noc50009.Google Scholar
Domjan, M., O'Vary, D., & Greene, P. (1988). Conditioning of appetitive and consummatory sexual behavior in male Japanese quail. Journal of the Experimental Analysis of Behavior, 50(3), 505–19. doi: 10.1901/jeab.1988.50-505.Google Scholar
Dreher, J.-C., Kohn, P., & Berman, K. F. (2006). Neural coding of distinct statistical properties of reward information in humans. Cerebral Cortex, 16(4), 561–73. doi: 10.1093/cercor/bhj004.Google Scholar
Dweck, C. S. & Leggett, E. L. (1988). A social-cognitive approach to motivation and personality. Psychological Review, 95(2), 256–73.Google Scholar
Ekman, J. B. & Hake, M. K. (1990). Monitoring starvation risk: adjustments of body reserves in greenfinches (Carduelis chloris L.) during periods of unpredictable foraging success. Behavioral Ecology, 1, 62–7.Google Scholar
Everitt, B. J. & Robbins, T. W. (2015). Drug addiction: updating actions to habits to compulsions ten years on. Annual Review of Psychology, 67, 2350. doi: 10.1146/annurev-psych-122414-033457.Google Scholar
Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299(5614), 1898–902. doi: 10.1126/science.1077349.Google Scholar
Fischman, M. W. & Foltin, R. W. (1992). Self-administration of cocaine by humans: a laboratory perspective. Ciba Foundation Symposium, 166, 165–80.Google Scholar
Gibbon, J., Farrell, L., Locurto, C. M., Duncan, H. J., & Terrace, H. S. (1980). Partial reinforcement in autoshaping with pigeons. Animal Learning & Behavior, 8(1), 4559.Google Scholar
Glimcher, P. W. (2011). Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 108 Suppl 3, 15647–54. doi: 10.1073/pnas.1014269108.Google Scholar
Gosler, A. G. (1996). Environmental and social determinants of winter fat storage in the great tit (Parus major). Journal of Animal Ecology, 65(1), 117. doi: 10.2307/5695?ref=search-gateway:1604b76cc4918de863817a1952f0beff.CrossRefGoogle Scholar
Gottlieb, D. A. (2004). Acquisition with partial and continuous reinforcement in pigeon autoshaping. Learning & Behavior, 32(3), 321–34.Google Scholar
Hart, A. S., Clark, J. J., & Phillips, P. E. M. (2015). Dynamic shaping of dopamine signals during probabilistic Pavlovian conditioning. Neurobiology of Learning and Memory, 117, 8492. doi: 10.1016/j.nlm.2014.07.010.Google Scholar
Hidi, S. & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–27.Google Scholar
Hinde, R. A. (1960). Energy models of motivation. Symposia of the Society for Experimental Biology, 14, 199213.Google Scholar
Holst, von E. & Saint Paul, von U. (1963). On the functional organisation of drives. Animal Behaviour, 11(1), 120.Google Scholar
Hull, C. L. (1943). Principles of behavior: An introduction to behavior theory. (Elliott, R. M., Ed.). Appleton-Century.Google Scholar
Ikemoto, S. (2010). Brain reward circuitry beyond the mesolimbic dopamine system: A neurobiological theory. Neuroscience and Biobehavioral Reviews, 35(2), 129–50. doi: 10.1016/j.neubiorev.2010.02.001.Google Scholar
Ikemoto, S. & Panksepp, J. (1996). Dissociations between appetitive and consummatory responses by pharmacological manipulations of reward-relevant brain regions. Behavioral Neuroscience, 110(2), 331–45.Google Scholar
Jenkins, H. M. & Moore, B. R. (1973). The form of the auto-shaped response with food or water reinforcers. Journal of the Experimental Analysis of Behavior, 20(2), 163–81. doi: 10.1901/jeab.1973.20-163.Google Scholar
Kassinove, J. I. & Schare, M. L. (2001). Effects of the “near miss” and the “big win” on persistence at slot machine gambling. Psychology of Addictive Behaviors, 15(2), 155–8. doi: 10.1037//0893-164X.15.2.155.Google Scholar
Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., ... Grasby, P. M. (1998). Evidence for striatal dopamine release during a video game. Nature, 393(6682), 266–8. doi: 10.1038/30498.Google Scholar
Laumann, E. O., Gagnon, J. H., Michael, R. T., & Michaels, S. (1994). The social organization of sexuality: Sexual practices in the United States. University of Chicago Press.Google Scholar
Linnet, J., Peterson, E., Doudet, D. J., Gjedde, A., & Møller, A. (2010). Dopamine release in ventral striatum of pathological gamblers losing money. Acta Psychiatrica Scandinavica, 122(4), 326–33. doi: 10.1111/j.1600-0447.2010.01591.x.Google Scholar
Litt, A., Khan, U., & Shiv, B. (2010). Lusting while loathing: parallel counterdriving of wanting and liking. Psychological Science, 21(1), 118–25. doi: 10.1177/0956797609355633.Google Scholar
McClure, S. M., Daw, N. D., & Montague, P. R. (2003). A computational substrate for incentive salience. Trends in Neurosciences, 26(8), 423–8.Google Scholar
McFarland, D. (1969). Separation of satiating and rewarding consequences of drinking. Physiology & Behavior, 4(6), 987–9. doi: 10.1016/0031-9384(69)90054-7.CrossRefGoogle Scholar
Miller, N. E. & Kessen, M. L. (1952). Reward effects of food via stomach fistula compared with those of food via mouth. Journal of Comparative and Physiological Psychology, 45(6), 555–64.Google Scholar
Myers, K. P. & Hall, W. G. (1998). Evidence that oral and nutrient reinforcers differentially condition appetitive and consummatory responses to flavors. Physiology & Behavior, 64(4), 493500.Google Scholar
Nicholls, J. G. (1984). Achievement motivation: Conceptions of ability, subjective experience, task choice, and performance. Psychological Review, 91(3), 328–46.Google Scholar
Nisbett, R. E. & Wilson, T. D. (1977). Telling more than we can know: Verbal reports on mental processes. Psychological Review, 84, 231–59.Google Scholar
Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. Oxford: Oxford University Press.Google Scholar
Peciña, S., Cagniard, B., Berridge, K. C., Aldridge, J. W., & Zhuang, X. (2003). Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. The Journal of Neuroscience, 23(28), 9395–402.Google Scholar
Pravosudov, V. V. & Grubb, T. C. (1997). Management of fat reserves and food caches in tufted titmice (Parus bicolor) in relation to unpredictable food supply. Behavioral Ecology, 8, 332–9.Google Scholar
Preuschoff, K., Bossaerts, P., & Quartz, S. R. (2006). Neural differentiation of expected reward and risk in human subcortical structures. Neuron, 51(3), 381–90. doi: 10.1016/j.neuron.2006.06.024.Google Scholar
Redish, A. D., Jensen, S., & Johnson, A. (2008). A unified framework for addiction: Vulnerabilities in the decision process. Behavioral and Brain Sciences, 31(4), 415–37. doi: 10.1017/S0140525X0800472X.Google Scholar
Renninger, K. A. (2000). Individual interest and its implications for understanding intrinsic motivation. In Sansone, C. & Harackiewicz, J. M. (Eds.), Intrinsic and extrinsic motivation: The search for optimal motivation and performance (pp. 375407). New York, NY: Elsevier. doi: 10.1016/B978-012619070-0/50035-0.Google Scholar
Renninger, K. A., Ewen, L., & Lasher, A. K. (2002). Individual interest as context in expository text and mathematical word problems. Learning and Instruction, 12, 467–91.Google Scholar
Renninger, K. A. & Hidi, S. (2016). Interest, attention, and curiosity. In Renninger, K. A. & Hidi, S. (Eds.), The power of interest for motivation and engagement (pp. 3251). New York, NY and London: Routledge.Google Scholar
Rescorla, R. A. & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Black, A. H. & Prokasy, W. F. (Eds.), Classical conditioning II: Current theory and research (pp. 6499). New York, NY: Appleton-Century-Crofts.Google Scholar
Robinson, M. J. F. & Berridge, K. C. (2013). Instant transformation of learned repulsion into motivational “Wanting”. Current Biology, 23(4), 282–9. doi: 10.1016/j.cub.2013.01.016.Google Scholar
Robinson, M. J. F. & Berridge, K. C. (2015). Wanting vs needing. In Wright, J. D. (Ed.), International encyclopedia of the social & behavioral sciences (2nd ed., Vol. 25, pp. 351–6). Oxford: Elsevier. doi: 10.1016/B978-0-08-097086-8.26091-1.Google Scholar
Robinson, M. J. F., Anselme, P., Fischer, A. M., & Berridge, K. C. (2014a). Initial uncertainty in Pavlovian reward prediction persistently elevates incentive salience and extends sign-tracking to normally unattractive cues. Behavioural Brain Research, 266, 119–30. doi: 10.1016/j.bbr.2014.03.004.Google Scholar
Robinson, M. J. F., Anselme, P., Suchomel, K., & Berridge, K. C. (2015a). Amphetamine-induced sensitization and reward uncertainty similarly enhance incentive salience for conditioned cues. Behavioral Neuroscience, 129(4), 502–11. doi: 10.1037/bne0000064.Google Scholar
Robinson, M. J. F., Burghardt, P. R., Patterson, C. M., Nobile, C. W., Akil, H., Watson, S. J., ... Ferrario, C. R. (2015b). Individual differences in cue-induced motivation and striatal systems in rats susceptible to diet-induced obesity. Neuropsychopharmacology, 40(9), 2113–23. doi: 10.1038/npp.2015.71.Google Scholar
Robinson, M. J. F., Fischer, A. M., Ahuja, A., Lesser, E. N., & Maniates, H. (2015c). Roles of “wanting” and “liking” in motivating behavior: Gambling, food, and drug addictions. In Balsam, P. D. & Simpson, E. H. (Eds.), (Vol. 27, pp. 105–36). Current topics in behavioral neurosciences. doi: 10.1007/7854_2015_387.Google Scholar
Robinson, M. J. F., Robinson, T. E., & Berridge, K. C. (2014b). Incentive salience in addiction and over-consumption. In Preston, S., Kringelbach, M. L., Knutson, B., & Whybrow, P. C. (Eds.), The interdisciplinary science of consumption (pp. 185–97). Cambridge, MA: MIT Press.Google Scholar
Robinson, T. E. & Berridge, K. C. (1993). The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Research Brain Research Reviews, 18(3), 247–91.Google Scholar
Robinson, T. E. & Berridge, K. C. (2001). Incentive-sensitization and addiction. Addiction, 96(1), 103–14. doi: 10.1046/j.1360-0443.2001.9611038.x.Google Scholar
Robinson, T. E. & Berridge, K. C. (2008). The incentive sensitization theory of addiction: some current issues. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 363(1507), 3137–46. doi: 10.1098/rstb.2008.0093.Google Scholar
Rosse, R. B., Fay-McCarthy, M., Collins, J. P., Risher-Flowers, D., Alim, T. N., & Deutsch, S. I. (1993). Transient compulsive foraging behavior associated with crack cocaine use. The American Journal of Psychiatry, 150(1), 155–6.Google Scholar
Salamone, J. D. & Correa, M. (2002). Motivational views of reinforcement: Implications for understanding the behavioral functions of nucleus accumbens dopamine. Behavioural Brain Research, 137, 325.Google Scholar
Salamone, J. D., Cousins, M. S., & Bucher, S. (1994). Anhedonia or anergia? Effects of haloperidol and nucleus accumbens dopamine depletion on instrumental response selection in a T-maze cost/benefit procedure. Behavioural Brain Research, 65(2), 221–9. doi: 10.1016/0166-4328(94)90108-2.Google Scholar
Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80(1), 127.Google Scholar
Schultz, W. (2010). Subjective neuronal coding of reward: temporal value discounting and risk. The European Journal of Neuroscience, 31(12), 2124–35. doi: 10.1111/j.1460-9568.2010.07282.x.Google Scholar
Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–9.Google Scholar
Singer, B. F., Scott-Railton, J., & Vezina, P. (2012). Unpredictable saccharin reinforcement enhances locomotor responding to amphetamine. Behavioural Brain Research, 226(1), 340–4. doi: 10.1016/j.bbr.2011.09.003.Google Scholar
Spence, K. W. (1956). Behavior theory and conditioning. New Haven, CT: Yale University Press. doi: 10.1037/10029-000.Google Scholar
Tan, C. O. & Bullock, D. (2008). A local circuit model of learned striatal and dopamine cell responses under probabilistic schedules of reward. Journal of Neuroscience, 28(40), 10062–74. doi: 10.1523/JNEUROSCI.0259-08.2008.Google Scholar
Tindell, A. J., Smith, K. S., Berridge, K. C., & Aldridge, J. W. (2009). Dynamic computation of incentive salience: “wanting” what was never “liked”. The Journal of Neuroscience, 29(39), 12220–8. doi: 10.1523/JNEUROSCI.2499-09.2009.Google Scholar
Toates, F. (1986). Motivational systems. New York, NY: Cambridge University Press.Google Scholar
Tolman, E. C. (1949). The nature and functioning of wants. Psychological Review, 56(6), 357–69.Google Scholar
Turner, L. H., Solomon, R. L., Stellar, E., & Wampler, S. N. (1975). Humoral factors controlling food intake in dogs. Acta Neurobiologiae Experimentalis, 35(5-6), 491–8.Google Scholar
Valenstein, E. S., Cox, V. C., & Kakolewski, J. W. (1970). Reexamination of the role of the hypothalamus in motivation. Psychological Review, 77(1), 1631.Google Scholar
Voon, V., Hassan, K., Zurowski, M., Duff-Canning, S., de Souza, M., Fox, S., ... Miyasaki, J. (2006). Prospective prevalence of pathologic gambling and medication association in Parkinson disease. Neurology, 66(11), 1750–2. doi: 10.1212/01.wnl.0000218206.20920.4d.Google Scholar
Wise, R. A. (1982). Neuroleptics and operant behavior: The anhedonia hypothesis. Behavioral and Brain Sciences, 5(1), 3953.Google Scholar
Wolf, S. G. & Wolff, H. G. (1943). Human gastric function: An experimental study of a man and his stomach. London: Oxford University Press.Google Scholar
Woodward, A., Phillips, A., & Spelke, E. S. (1993). Infants’ expectations about the motions of inanimate vs. animate objects. In Proceedings of the Cognitive Science Society, Hillsdale, NJ: Erlbaum.Google Scholar
Young, P. T. (1961). Motivation and emotion: A survey of the determinants of human and animal activity. Oxford: Wiley.Google Scholar
Zack, M., Featherstone, R. E., Mathewson, S., & Fletcher, P. J. (2014). Chronic exposure to a gambling-like schedule of reward predictive stimuli can promote sensitization to amphetamine in rats. In Singer, B. F., Anselme, P., Robinson, M. J., & Vezina, P. (Eds.), Neuronal and Psychological Underpinnings of Pathological Gambling. Lausanne: Frontiers in Behavioral Neuroscience, 8, 36. doi: 10.3389/fnbeh.2014.00036.Google Scholar

References

Abuhamdeh, S. & Csikszentmihalyi, M. (2012). The importance of challenge for the enjoyment of intrinsically motivated, goal-directed activities. Personality and Social Psychology Bulletin, 38(3), 317–30. doi: 10.1177/0146167211427147.Google Scholar
Adcock, R. A., Thangavel, A., Whitfield-Gabrieli, S., Knutson, B., & Gabrieli, J. D. (2006). Reward-motivated learning: Mesolimbic activation precedes memory formation. Neuron, 50(3), 507–17. doi: 10.1016/j.neuron.2006.03.036.Google Scholar
Anderson, B. A., Laurent, P. A., & Yantis, S. (2011). Value-driven attentional capture. Proceedings of the National Academy of Sciences of the United States of America, 108(25), 10367–71. doi: 10.1073/pnas.1104047108.Google Scholar
Baddeley, A. D. (1986). Working memory. Oxford: Oxford University Press.Google ScholarPubMed
Baldassarre, G. & Mirolli, M. (2013). Intrinsically motivated learning systems: An overview. In Intrinsically motivated learning in natural and artificial systems (pp. 114). Berlin Heidelberg: Springer. doi: 10.1007/978-3-642-32375-1_1.Google Scholar
Baldi, P. & Itti, L. (2010). Of bits and wows: A Bayesian theory of surprise with applications to attention. Neural Networks, 23(5), 649–66. doi: 10.1016/j.neunet.2009.12.007.Google Scholar
Baranes, A. & Oudeyer, P. Y. (2013). Active learning of inverse models with intrinsically motivated goal exploration in robots. Robotics and Autonomous Systems, 61(1), 4973. doi: 10.1016/j.robot.2012.05.00.Google Scholar
Baranes, A., Oudeyer, P. Y., & Gottlieb, J. (2015). Eye movements reveal epistemic curiosity in human observers. Vision Research, 117, 8190. doi: 10.1016/j.visres.2015.10.009.Google Scholar
Barto, A. G. (2013). Intrinsic motivation and reinforcement learning. In Intrinsically motivated learning in natural and artificial systems (pp. 1747). Berlin Heidelberg: Springer. doi: 10.1007/978-3-642-32375-1_2.Google Scholar
Barto, A., Mirolli, M., & Baldassarre, G. (2013). Novelty or surprise? Frontiers in Psychology, 4. doi: 10.3389/fpsyg.2013.00907.Google Scholar
Beck, J. M., Ma, W. J., Kiani, R., Hanks, T., Churchland, A. K., Roitman, J., ... Pouget, A. (2008). Probabilistic population codes for Bayesian decision making. Neuron, 60(6), 1142–52. doi: 10.1016/j.neuron.2008.09.021.Google Scholar
Berlyne, D. E. (1960). Conflict, arousal, and curiosity. McGraw-Hill.Google Scholar
Berridge, K. C. & Kringelbach, M. L. (2008). Affective neuroscience of pleasure: Reward in humans and animals. Psychopharmacology, 199(3), 457–80. doi: 10.1007/s00213-008-1099-6.Google Scholar
Bialek, W., Nemenman, I., & Tishby, N. (2001). Predictability, complexity, and learning. Neural Computation, 13(11), 2409–63. doi: 10.1162/089976601753195969.Google Scholar
Blake, A. & Yuille, A. (1992). Active vision. Cambridge, MA: MIT Press.Google Scholar
Blanchard, T. C., Hayden, B. Y., & Bromberg-Martin, E. S. (2015). Orbitofrontal cortex uses distinct codes for different choice attributes in decisions motivated by curiosity. Neuron, 85(3), 602–14. doi: 10.1016/j.neuron.2014.12.050.Google Scholar
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624. doi: 10.1037/0033-295X.108.3.624.Google Scholar
Britten, K. H., Shadlen, M. N., Newsome, W. T., & Movshon, J. A. (1992). The analysis of visual motion: A comparison of neuronal and psychophysical performance. Journal of Neuroscience, 12(12), 4745–65.Google Scholar
Brockmole, J. R. & Henderson, J. M. (2005a). Object appearance, disappearance, and attention prioritization in real-world scenes. Psychonomic Bulletin & Review, 12(6), 1061–7. doi: 10.3758/BF03206444.Google Scholar
Brockmole, J. R. & Henderson, J. M. (2005b). Prioritization of new objects in real-world scenes: Evidence from eye movements. Journal of Experimental Psychology–Human Perception and Performance, 31(5), 857–68. doi: 10.1037/0096-1523.31.5.857.Google Scholar
Bromberg-Martin, E. S. & Hikosaka, O. (2009). Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron, 63(1), 119–26. doi: 10.1016/j.neuron.2009.06.009.Google Scholar
Buschman, T. J. & Miller, E. K. (2007). Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science, 315(5820), 1860–2.Google Scholar
Castro, D. C. & Berridge, K. C. (2014). Advances in the neurobiological bases for food “liking” versus “wanting”. Physiology & Behavior, 136, 2230. doi: 10.1126/science.1138071.Google Scholar
Chiba, A. A., Bucci, D. J., Holland, P. C., & Gallagher, M. (1995). Basal forebrain cholinergic lesions disrupt increments but not decrements in conditioned stimulus processing. Journal of Neuroscience, 15(11), 7315–22.CrossRefGoogle Scholar
Csikszentmihalyi, M. (1997). Flow and the psychology of discovery and invention. New York, NY: Harper Perennial.Google Scholar
Daddaoua, N., Lopes, M., & Gottlieb, J. (2016). Intrinsically motivated oculomotor exploration guided by uncertainty reduction and conditioned reinforcement in non-human primates. Scientific Reports, 6. doi: 10.1038/srep20202.Google Scholar
Dalley, J. W., McGaughy, J., O'Connell, M. T., Cardinal, R. N., Levita, L., & Robbins, T. W. (2001). Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task. Journal of Neuroscience, 21(13), 4908–14.Google Scholar
Dayan, P. & Daw, N. D. (2008). Decision theory, reinforcement learning, and the brain. Cognitive, Affective, & Behavioral Neuroscience, 8(4), 429–53. doi: 10.3758/cabn.8.4.429.Google Scholar
Dayan, P., Niv, Y., Seymour, B., & Daw, N. D. (2006). The misbehavior of value and the discipline of the will. Neural Networks, 19(8), 1153–60. doi: 10.1016/j.neunet.2006.03.002.Google Scholar
Della Libera, C. & Chelazzi, L. (2009). Learning to attend and to ignore is a matter of gains and losses. Psychological Science, 20(6), 778–84. doi: 10.1111/j.1467-9280.2009.02360.x.Google Scholar
Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12(3), 99105. doi: 10.1016/j.tics.2008.01.001.Google Scholar
Everitt, B. J. & Robbins, T. W. (1997). Central cholinergic systems and cognition. Annual Review of Psychology, 48(1), 649–84. doi: 10.1146/annurev.psych.48.1.649.Google Scholar
Falkenstein, M., Koshlykova, N. A., Kiroj, V. N., Hoormann, J., & Hohnsbein, J. (1995). Late ERP components in visual and auditory Go/Nogo tasks. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 96(1), 3643. doi: 10.1016/0013-4694(94)00182-k.Google Scholar
Flagel, S. B., Clark, J. J., Robinson, T. E., Mayo, L., Czuj, A., Willuhn, I., ... Akil, H., (2011). A selective role for dopamine in reward learning. Nature, 469(7328), 53. doi: 10.1038/nature09588.Google Scholar
Foley, N. C., Jangraw, D. C., Peck, C., & Gottlieb, J. (2014). Novelty enhances visual salience independently of reward in the parietal lobe. Journal of Neuroscience, 34(23), 7947–57. doi: 10.1523/jneurosci.4171-13.2014.Google Scholar
Foley, N. C., Kelly, S. P., Mhatre, H., Lopes, M., & Gottlieb, J. (2017). Parietal neurons encode expected gains in instrumental information. Proceedings of the National Academy of Sciences of the United States of America, 114(16), E3315-E3323.Google Scholar
Forestier, S. & Oudeyer, P. Y. (2016). Curiosity-driven development of tool use precursors: A computational model. In 38th Annual Conference of the Cognitive Science Society (CogSci 2016) (pp. 1859–64).Google Scholar
Friedman-Hill, S. R., Robertson, L. C., Desimone, R., & Ungerleider, L. G. (2003). Posterior parietal cortex and the filtering of distractors. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 4263–8. doi: 10.1073/pnas.0730772100.Google Scholar
Friston, K., Schwartenbeck, P., FitzGerald, T., Moutoussis, M., Behrens, T., & Dolan, R. (2013). The anatomy of choice: active inference and agency. Frontiers in Human Neuroscience, 7. doi: 10.3389/fnhum.2013.00598.Google Scholar
Gehring, W. J., Goss, B., Coles, M. G., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4(6), 385–90. doi: 10.1111/j.1467-9280.1993.tb00586.x.Google Scholar
Gehring, W. J. & Knight, R. T. (2002). Lateral prefrontal damage affects processing selection but not attention switching. Cognitive Brain Research, 13(2), 267–79. doi: 10.1016/s0926-6410(01)00132-x.Google Scholar
Germain, C. M. & Hess, T. M. (2007). Motivational influences on controlled processing: Moderating distractibility in older adults. Aging, Neuropsychology, and Cognition, 14(5), 462–86. doi: 10.1080/13825580600611302.Google Scholar
Gold, J. I. & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30, 535–74. doi: 10.1146/annurev.neuro.29.051605.113038.Google Scholar
Goldberg, M. E., Bisley, J. W., Powell, K. D., & Gottlieb, J. (2006). Saccades, salience and attention: the role of the lateral intraparietal area in visual behavior. Progress in Brain Research, 155, 157–75. doi: 10.1016/S0079-6123(06)55010-1.Google Scholar
Gottlieb, J. (2012). Attention, learning, and the value of information. Neuron, 76(2), 281–95. doi: 10.1016/j.neuron.2012.09.034.Google Scholar
Gottlieb, J. (2018). Understanding active sampling strategies: empirical approaches and implications for attention and decision research. Cortex, 102, 150–60. doi: 10.1016/j.cortex.2017.08.019.Google Scholar
Gottlieb, J. & Balan, P. (2010). Attention as a decision in information space. Trends in Cognitive Sciences, 14(6), 240–8. doi: 10.1016/j.tics.2010.03.001.Google Scholar
Gottlieb, J. & Goldberg, M. E. (1999). Activity of neurons in the lateral intraparietal area of the monkey during an antisaccade task. Nature Neuroscience, 2(10), 906–13. doi: 10.1038/13209.Google Scholar
Gottlieb, J., Hayhoe, M., Hikosaka, O., & Rangel, A. (2014). Attention, reward, and information seeking. Journal of Neuroscience, 34(46), 15497–504. doi: 10.1523/JNEUROSCI.3270-14.2014.Google Scholar
Gottlieb, J., Lopes, M., & Oudeyer, P. Y. (2016). Motivated cognition: Neural and computational mechanisms of curiosity, attention, and intrinsic motivation. In Kim, S., Reeve, J. & Bong, M. (Eds.), Advances in motivation and achievement: Recent developments in neuroscience research on human motivation (pp. 149–72). Bingley: Emerald Group Publishing.Google Scholar
Gottlieb, J., Oudeyer, P. Y., Lopes, M., & Baranes, A. (2013). Information-seeking, curiosity, and attention: computational and neural mechanisms. Trends in Cognitive Sciences, 17(11), 585–93. doi: 10.1016/j.tics.2013.09.001.Google Scholar
Grossnickle, E. M. (2015). The expression and enactment of interest and curiosity in a multiple source use task (Doctoral dissertation). University of Maryland, College Park.Google Scholar
Gruber, M. J., Gelman, B. D., & Ranganath, C. (2014). States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit. Neuron, 84(2), 486–96. doi: 10.1016/j.neuron.2014.08.060.Google Scholar
Hickey, C., Chelazzi, L., & Theeuwes, J. (2010). Reward changes salience in human vision via the anterior cingulate. Journal of Neuroscience. 30, 11096–103. doi: 10.1523/JNEUROSCI.1026-10.2010.Google Scholar
Hidi, S. (1990). Interest and its contribution as a mental resource for learning. Review of Educational Research, 60(4), 549–71. doi: 10.3102/00346543060004549.Google Scholar
Hidi, S. (2016). Revisiting the role of rewards in motivation and learning: Implications of neuroscientific research. Educational Psychology Review, 28(1), 6193. doi: 10.1007/s10648-015-9307-5.Google Scholar
Horvitz, J. C. (2000). Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience, 96(4), 651–6. doi: 10.1016/S0306-4522(00)00019-1.Google Scholar
Isaacowitz, D. M., Wadlinger, H. A., Goren, D., & Wilson, H. R. (2006). Selective preference in visual fixation away from negative images in old age? An eye-tracking study. Psychology and Aging, 21(1), 40. doi: 10.1037/0882-7974.21.1.40.Google Scholar
Itti, L. & Baldi, P. (2009). Bayesian surprise attracts human attention. Vision Research, 49(10), 1295–306. doi: 10.1016/j.visres.2008.09.007.Google Scholar
Johnson, L., Sullivan, B., Hayhoe, M., & Ballard, D. (2014). Predicting human visuomotor behavior in a driving task. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1636), 20130044. doi: 10.1098/rstb.2013.0044.Google Scholar
Kable, J. W. & Glimcher, P. W. (2009). The neurobiology of decision: consensus and controversy. Neuron, 63(6), 733–45. doi: 10.1016/j.neuron.2009.09.003.Google Scholar
Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially observable stochastic domains. Artificial Intelligence, 101(1), 99134. doi: 10.1016/s0004-3702(98)00023-x.Google Scholar
Kakade, S. & Dayan, P. (2002). Dopamine: Generalization and bonuses. Neural Networks, 15(4), 549–59. doi: 10.1016/s0893-6080(02)00048-5.Google Scholar
Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. T. Y., & Camerer, C. F. (2009). The wick in the candle of learning: Epistemic curiosity activates reward circuitry and enhances memory. Psychological Science, 20(8), 963–73. doi: 10.2139/ssrn.1308286.Google Scholar
Kaplan, F. & Oudeyer, P.-Y. (2007). In search of the neural circuits of intrinsic motivation. Frontiers in Neuroscience, 1, 17Google Scholar
Kaplan, F. & Oudeyer, P.-Y. (2011). From hardware and software to kernels and envelopes: A concept shift for robotics, developmental psychology, and brain sciences. In Krichmar, J. L. & Wagatsuma, H. (Eds.), Neuromorphic and brain-based robots (pp. 217–50). Cambridge: Cambridge University Press. doi: 10.1017/cbo9780511994838.011.Google Scholar
Keller, J. & Bless, H. (2008). Flow and regulatory compatibility: An experimental approach to the flow model of intrinsic motivation. Personality and Social Psychology Bulletin, 34(2), 196209. doi: 10.1177/0146167207310026.Google Scholar
Laurent, P. A. (2008). The emergence of saliency and novelty responses from reinforcement learning principles. Neural Networks, 21(10), 1493–9. doi: 10.1016/j.neunet.2008.09.004.Google Scholar
Litman, J. A. (2005). Curiosity and the pleasures of learning: Wanting and liking new information. Cognition & Emotion, 19(6), 793814. doi: 10.1080/026999 30541000101.Google Scholar
Litman, J. A. (2007). Curiosity as a feeling of interest and feeling of deprivation: The I/D model of curiosity. Issues in the Psychology of Motivation, 149–56. doi: 10.1037/t27877-000.Google Scholar
Litman, J. A. (2008). Interest and deprivation factors of epistemic curiosity. Personality and Individual Differences, 44(7), 1585–95. doi: 10.1016/j.paid.2008.01.014.Google Scholar
Loewenstein, G. (1994). The psychology of curiosity: A review and reinterpretation. Psychological Bulletin, 116(1), 75. doi: 10.1037//0033-2909.116.1.75.Google Scholar
Lopes, M. & Oudeyer, P. Y. (2012). The strategic student approach for life-long exploration and learning. In 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL) (pp. 18). IEEE. doi: 10.1109/devlrn.2012.6400807.Google Scholar
Mather, M. & Carstensen, L. L. (2003). Aging and attentional biases for emotional faces. Psychological Science, 14(5), 409–15. doi: 10.1111/1467-9280.01455.Google Scholar
Maunsell, J. H. (2004). Neuronal representations of cognitive state: reward or attention? Trends in Cognitive Sciences, 8(6), 261–5. doi: 10.1016/j.tics.2004.04.003.Google Scholar
Mazurek, M. E., Roitman, J. D., Ditterich, J., & Shadlen, M. N. (2003). A role for neural integrators in perceptual decision making. Cerebral Cortex, 13(11), 1257–69. doi: 10.1093/cercor/bhg097.Google Scholar
Moulin-Frier, C. & Oudeyer, P. Y. (2012). Curiosity-driven phonetic learning. In 2012 IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL) (pp. 18). IEEE. doi: 10.1109/devlrn.2012.6400583.Google Scholar
Mullaney, K. M., Carpenter, S. K., Grotenhuis, C., & Burianek, S. (2014). Waiting for feedback helps if you want to know the answer: The role of curiosity in the delay-of-feedback benefit. Memory & Cognition, 42(8), 1273–84. doi: 10.3758/s13421-014-0441-y.Google Scholar
Najemnik, J. & Geisler, W. S. (2005). Optimal eye movement strategies in visual search. Nature, 434(7031), 387. doi: 10.1016/j.ajo.2005.04.009.Google Scholar
Navalpakkam, V. & Itti, L. (2005). Modeling the influence of task on attention. Vision Research, 45(2), 205–31. doi: 10.1016/j.visres.2004.07.042.Google Scholar
Ngo, H., Luciw, M., Forster, A., & Schmidhuber, J. (2012). Learning skills from play: artificial curiosity on a katana robot arm. In 2012 International Joint Conference on Neural Networks (IJCNN) (pp. 18). IEEE. doi: 10.1109/ijcnn.2012.6252824.Google Scholar
Nguyen, S.M. & Oudeyer, P. Y. (2013). Socially guided intrinsic motivation for robot learning of motor skills. Autonomous Robots, 36(3), 273–94. doi: 10.1007/s10514-013-9339-y.Google Scholar
Norman, D. A. & Shallice, T. (1986). Attention to action. In Consciousness and self-regulation (pp. 118). NYC, NY: Springer US. doi: 10.1007/978-1-4757-0629-1_1.Google Scholar
Oudeyer, P. Y., Baranes, A., & Kaplan, F. (2013). Intrinsically motivated learning of real-world sensorimotor skills with developmental constraints. In M. Mirolli & G. Baldassarre (Eds.), Intrinsically motivated learning in natural and artificial systems (pp. 303–65). Berlin Heidelberg: Springer. doi: 10.1007/978-3-642-32375-1_13.Google Scholar
Oudeyer, P. Y., Gottlieb, J., & Lopes, M. (2016). Intrinsic motivation, curiosity, and learning: Theory and applications in educational technologies. Progress in Brain Research, 229, 257–84. doi: 10.1016/bs.pbr.2016.05.005.Google Scholar
Oudeyer, P. Y. & Kaplan, F. (2006). Discovering communication. Connection Science, 18(2), 189206. doi: 10.1080/09540090600768567.Google Scholar
Oudeyer, P. Y., Kaplan, F., & Hafner, V. V. (2007). Intrinsic motivation systems for autonomous mental development. IEEE Transactions on Evolutionary Computation, 11(2), 265–86. doi: 10.1109/TEVC.2006.890271.Google Scholar
Pape, L., Oddo, C. M., Controzzi, M., Cipriani, C., Förster, A., Carrozza, M. C. & Schmidhuber, J. (2012). Learning tactile skills through curious exploration. Frontiers in Neurorobotics, 6. doi: 10.3389/fnbot.2012.00006.Google Scholar
Payzan-LeNestour, E. & Bossaerts, P. (2011). Risk, unexpected uncertainty, and estimation uncertainty: Bayesian learning in unstable settings. PLoS Computational Biology, 7(1), e1001048. doi: 10.1371/journal.pcbi.1001048.Google Scholar
Peck, C. J., Jangraw, D. C., Suzuki, M., Efem, R., & Gottlieb, J. (2009). Reward modulates attention independently of action value in posterior parietal cortex. Journal of Neuroscience, 29(36), 11182–91. doi: 10.1523/jneurosci.1929-09.2009.Google Scholar
Pessoa, L., Kastner, S., & Ungerleider, L. G. (2003). Neuroimaging studies of attention: From modulation of sensory processing to top-down control. Journal of Neuroscience, 23(10), 3990–8. doi: 0270-6474/03/233990-09.00/0.Google Scholar
Platt, M. L. & Glimcher, P. W. (1999). Neural correlates of decision variables in parietal cortex. Nature, 400(6741), 233.Google Scholar
Posner, M. I. (1994). Attention: The mechanisms of consciousness. Proceedings of the National Academy of Sciences of the United States of America, 91(16), 7398–403. doi: 10.1073/pnas.91. 16.7398.Google Scholar
Posner, M. I. & Dehaene, S. (1994). Attentional networks. Trends in Neurosciences, 17(2), 75–9. doi: 10.1016/0166-2236(94)90078-7.Google Scholar
Renninger, K. A. & Hidi, S. (2011). Revisiting the conceptualization, measurement, and generation of interest. Educational Psychologist, 46(3), 168–84. doi: 10.1080/00461520.2011.587723.Google Scholar
Renninger, K. A. & Hidi, S. & Hidi, S. (2016). The power of interest for motivation and learning. New York, NY; Routledge.Google Scholar
Renninger, L. W., Verghese, P., & Coughlan, J. (2007). Where to look next? Eye movements reduce local uncertainty. Journal of Vision, 7(3), 6. doi: 10.1167/7.3.6.Google Scholar
Risko, E. F., Anderson, N. C., Lanthier, S., & Kingstone, A. (2012). Curious eyes: Individual differences in personality predict eye movement behavior in scene-viewing. Cognition, 122(1), 8690. doi: 10.1016/j.cognition.2011.08.014.Google Scholar
Ryan, R. M. & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 5467. doi: 10.1006/ceps.1999.1020.Google Scholar
Sarter, M., Gehring, W. J., & Kozak, R. (2006). More attention must be paid: The neurobiology of attentional effort. Brain Research Reviews, 51(2), 145–60. doi: 10.1016/j.brainresrev.2005.11.002.Google Scholar
Satterthwaite, T. D., Ruparel, K., Loughead, J., Elliot, M. A., Gerraty, R. T., Calkins, M. E., ... Wolf, D. H. (2012). Being right is its own reward: load and performance related ventral striatum activation to correct responses during a working memory task in youth. Neuroimage, 61(3), 723–29.Google Scholar
Schmidhuber, J. (2006). Developmental robotics, optimal artificial curiosity, creativity, music, and the fine arts. Connection Science, 18(2), 173–87. doi: 10.1080/09540090600768658.Google Scholar
Schmidhuber, J. (2013). Maximizing fun by creating data with easily reducible subjective complexity. In Mirolli, M. & Baldassarre, G. (Eds.), Intrinsically motivated learning in natural and artificial systems (pp. 95128). Berlin Heidelberg: Springer. doi: 10.1007/978-3-642-32375-1_5.Google Scholar
Singh, S., James, M. R., & Rudary, M. R. (2004). Predictive state representations: A new theory for modeling dynamical systems. In Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence (pp. 512–19). AUAI Press.Google Scholar
Singh, S., Lewis, R. L., Barto, A. G., & Sorg, J. (2010). Intrinsically motivated reinforcement learning: An evolutionary perspective. IEEE Transactions on Autonomous Mental Development, 2(2), 7082. doi: 10.1109/TAMD.2010.2051031.Google Scholar
Srivastava, R. K., Steunebrink, B. R., & Schmidhuber, J. (2013). First experiments with PowerPlay. Neural Networks, 41, 130–36. doi: 10.1016/j.neunet.2013.01.022.Google Scholar
Steels, L. (2004). The autotelic principle. Lecture Notes in Computer Science, (3139), 231–42. doi: 10.1007/978-3-540-27833-7_17.Google Scholar
Stuss, D. T., Shallice, T., Alexander, M. P., & Picton, T. W. (1995). A multidisciplinary approach to anterior attentional functions. Annals of the New York Academy of Sciences, 769(1), 191212. doi: 10.1111/j.1749-6632.1995.tb38140.x.Google Scholar
Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2005). Choosing the greater of two goods: neural currencies for valuation and decision making. Nature Reviews. Neuroscience, 6(5), 363. doi: 10.1038/nrn1666.Google Scholar
Sullivan, B. T., Johnson, L., Rothkopf, C. A., Ballard, D., & Hayhoe, M. (2012). The role of uncertainty and reward on eye movements in a virtual driving task. Journal of Vision, 12(13), 19. doi: 10.1167/12.13.19.Google Scholar
Tatler, B. W., Hayhoe, M. M., Land, M. F., & Ballard, D. H. (2011). Eye guidance in natural vision: Reinterpreting salience. Journal of Vision, 11(5), 5. doi: 10.1167/11.5.5.Google Scholar
Thorndike, E. L. (1911). Animal intelligence. New York: Macmillan.Google Scholar
Tsotsos, J. K. (2011). A computational perspective on visual attention. Cambridge, MA: MIT Press. doi: 10.7551/mitpress/9780262015417.001.0001.Google Scholar
Ullsperger, M. & von Cramon, D. Y. (2004). Neuroimaging of performance monitoring: Error detection and beyond. Cortex, 40(4), 593604. doi: 10.1016/s0010-9452(08)70155-2.Google Scholar
van Duijvenvoorde, A. C., Peters, S., Braams, B. R., & Crone, E. A. (2016). What motivates adolescents? Neural responses to rewards and their influence on adolescents’ risk taking, learning, and cognitive control. Neuroscience & Biobehavioral Reviews, 70, 135–47. doi: 10.1016/j.neubiorev.2016.06.037.Google Scholar
Vossel, S., Mathys, C., Daunizeau, J., Bauer, M., Driver, J., & Friston, K. J., & Stephan, K. E. (2013). Spatial attention, precision, and Bayesian inference: A study of saccadic response speed. Cerebral Cortex, 24(6), 1436–450. doi: 10.1093/cercor/bhs418.Google Scholar
Vossel, S., Mathys, C., Stephan, K. E., & Friston, K. J. (2015). Cortical coupling reflects Bayesian belief updating in the deployment of spatial attention. Journal of Neuroscience, 35(33), 11532–42. doi: 10.1523/jneurosci.1382-15.2015.Google Scholar
Vossel, S., Thiel, C. M., & Fink, G. R. (2006). Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex. Neuroimage, 32(3), 1257–64. doi: 10.1016/j.neuroimage.2006.05.019.Google Scholar
Wang, X. J. (2008). Decision making in recurrent neuronal circuits. Neuron, 60(2), 215–34. doi: 10.1016/j.neuron.2008.09.034.Google Scholar
Wise, R. A. (2004). Dopamine, learning and motivation. Nature Reviews Neuroscience, 5(6), 483.Google Scholar
Wittmann, B. C., Bunzeck, N., Dolan, R. J., & Düzel, E. (2007). Anticipation of novelty recruits reward system and hippocampus while promoting recollection. Neuroimage, 38(1), 194202. doi: 10.1016/j.neuroimage.2007.06.038.Google Scholar
Wittmann, B. C., Daw, N. D., Seymour, B., & Dolan, R. J. (2008). Striatal activity underlies novelty-based choice in humans. Neuron, 58(6), 967–73. doi: 10.1016/j.neuron.2008.04.027.Google Scholar
Yang, H., Chen, X., & Zelinsky, G. J. (2009). A new look at novelty effects: Guiding search away from old distractors. Attention, Perception, & Psychophysics, 71(3), 554–64. doi: 10.3758/app.71.3.554.Google Scholar
Yang, S. C. H., Lengyel, M., & Wolpert, D. M. (2016). Active sensing in the categorization of visual patterns. eLife, 5, e12215. doi: 10.7554/elife.25660.Google Scholar
Yang, T. & Shadlen, M. N. (2007). Probabilistic reasoning by neurons. Nature, 447(7148), 1075. doi: 10.1038/nature05852.Google Scholar
Yu, A.J. & Dayan, P. (2005). Uncertainty, neuromodulation, and attention. Neuron, 46(4), 681–92. doi: 10.1016/j.neuron.2005.04.026.Google Scholar

References

Abramovich, S., Schunn, C., & Higashi, R. M. (2013). Are badges useful in education? It depends upon the type of badge and expertise of learner. Educational Technology Research and Development, 61(2), 217–32. doi: 10.1007/s11423-013-9289-2.Google Scholar
Afterschool Alliance (2015). Digital badges in afterschool: Connecting learning in a connected world. [Report]. Retrieved from www.afterschoolalliance.org/documents/DigitalBadgesInAfterschool.pdf.Google Scholar
American Council on Education (2016). Quality dimensions for connected credentials. Washington, DC. Retrieved from http://connectingcredentials.org/wp-content/uploads/2016/04/Quality-Dimensions-for-Connected-Credentials.pdf.Google Scholar
Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Review, 89(4), 369406. doi: 10.1037/0033-295X.89.4.369.Google Scholar
Anderson, T. & McGreal, R. (2012). Disruptive pedagogies and technologies in universities. Educational Technology & Society, 15(4), 380–89.Google Scholar
Ash, K. (2012, June 13). “Digital badges” would represent student skill acquisition; Initiatives seek to give students permanent online records for developing specific skills. Education Week Digital Directions 5(3), pp. 2425, 28, 30. Retrieved from https://www.edweek.org/dd/articles/2012/06/13/03badges.h05.htmlGoogle Scholar
Bandura, A. (2000). Exercise of human agency through collective efficacy. Current Directions in Psychological Science, 9(3), 75–8.Google Scholar
Barab, S., Zuiker, S., Warren, S., Hickey, D., Ingram-Goble, A., Kwon, E. J., ... Herring, S. C. (2007). Situationally embodied curriculum: Relating formalisms and contexts. Science Education, 91(5), 750–82. doi: 10.1002/sce.20217.Google Scholar
Blackburn, R. D., Porto, S. C., & Thompson, J. J. (2016). Competency-based education and the relationship to digital badges. In Muilenburg, L. Y. & Berge, Z. L. (Eds.), Digital badges in education: Trends, issues, and cases (pp. 30–8). New York, NY: Routledge.Google Scholar
Bologna Open Recognition Declaration (2016). Author. Retrieved from www.openrecognition.org.Google Scholar
Bowen, K. (2013). “Carpetbadging” – why metadata is so important when it comes to #openbadges [Twitter post]. Retrieved from https://twitter.com/kyledbowen/status/336577520449245185.Google Scholar
Brown, J. S. (2012). Cultivating the entrepreneurial learner in the 21st century. [YouTube video]. Keynote address at the 2012 Digital Media and Learning Conference. Retrieved from https://www.youtube.com/watch?v=SoRV0BEwvEU.Google Scholar
Brown, J. S. & Adler, R. P. (2008). Open education, the long tail, and learning 2.0. EDUCAUSE Review, 43(1), 1620.Google Scholar
Buckingham, J. (2014). Open digital badges for the uninitiated. The Electronic Journal for English as a Second Language, 18(1), 111.Google Scholar
Cameron, J., Banko, K. M., & Pierce, W. D. (2001). Pervasive negative effects of rewards on intrinsic motivation: The myth continues. The Behavior Analyst, 24(1), 144.Google Scholar
Carey, K. (2012). Show me your badge. The New York Times. Retrieved from https://www.nytimes.com/2012/11/04/education/edlife/show-me-your-badge.html.Google Scholar
Case, R. (1996). Changing views of knowledge and their impact on educational research and practice. In Olson, D. R. & Torrance, N. (Eds.), Handbook of education and human development (pp. 7599). Cambridge, MA: Blackwell.Google Scholar
Casilli, C. & Hickey, D. (2016). Transcending conventional credentialing and assessment paradigms with information-rich digital badges. The Information Society, 32(2), 117–29. doi: 10.1080/01972243.2016.1130500.Google Scholar
Chen, G. & Kanfer, R. (2006). Toward a systems theory of motivated behavior in work teams. Research in Organizational Behavior, 27, 223–67. doi: 10.1016/s0191-3085(06)27006-0.Google Scholar
Cordova, D. I. & Lepper, M. R. (1996). Intrinsic motivation and the process of learning: Beneficial effects of contextualization, personalization, and choice. Journal of Educational Psychology, 88(4), 715–30.Google Scholar
Davis, K. & Singh, S. (2015). Digital badges in afterschool learning: Documenting the perspectives and experiences of students and educators. Computers & Education, 88, 7283. doi: 10.1016/j.compedu/2015.04.011.Google Scholar
Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of experiments examining the effects of extrinsic rewards on intrinsic motivation. Psychological Bulletin, 125(6), 627–68. doi: 10.1037/0033-2909.125.6.627.Google Scholar
Deci, E. L. & Ryan, R. M. (1985). The general causality orientations scale: Self-determination in personality. Journal of Research in Personality, 19(2), 109–34. doi: 10.1016/0092-6566(85).Google Scholar
Duncan, A. (2011). Digital Badges for Learning. Opening remarks and DML 2012 competition event transcript. Retrieved from www.ed.gov/news/speeches/digital-badges-learning.Google Scholar
Eisenberg, A. (2011, November 19). For job hunters, digital merit badges. The New York Times, p. BU3. Retrieved from https://www.nytimes.com/2011/11/20/business/digital-badges-may-highlight-job-seekers-skills.htmlGoogle Scholar
Engle, R. A. (2006). Framing interactions to foster generative learning: A situative explanation of transfer in a community of learners classroom. The Journal of the Learning Sciences, 15(4), 451498. http://doi.org/10.1207/s15327809jls1504Google Scholar
Engle, R. A. & Conant, F. R. (2002). Guiding principles for fostering productive disciplinary engagement: Explaining an emergent argument in a community of learners classroom. Cognition and Instruction, 20(4), 399483. doi: 10.1207/S1532690XCI2004_1.Google Scholar
Everhart, D., Derryberry, A., Knight, E., & Lee, S. (2016). The role of endorsement in Open Badges ecosystems. In Ifenthaler, D., Belin-Mularski, N., & Mah, D., (Eds.), Foundation of digital badges and micro-credentials (pp. 221–35). New York, NY: Springer.Google Scholar
Everhart, D., Sandeen, C., Seymour, D., & Yoshino, K. (2014). Clarifying competency-based education terms: A lexicon. Blackboard.com. Retrieved from http://bbbb.blackboard.com/Competency-based-education-definitions.Google Scholar
Ferlazzo, L. (2012). The dangers of “gamification” in education. Edublogs. Retrieved from http://larryferlazzo.edublogs.org/2012/02/26/the-dangers-of-gamification-in-education/.Google Scholar
Filsecker, M. & Hickey, D. T. (2014). A multilevel analysis of the effects of external rewards on elementary students' motivation, engagement and learning in an educational game. Computers & Education, 75, 136–48. doi: 10.1016/j.compedu.2014.02.008.Google Scholar
Fong, J., Janzow, P., & Peck, K. (2016). Demographic shifts in educational demand and the rise of alternative credentials. University Professional and Continuing Education Association. Retrieved from http://upcea.edu/wp-content/uploads/2017/05/Demographic-Shifts-in-Educational-Demand-and-the-Rise-of-Alternative-Credentials.pdf.Google Scholar
Gardner, H. (1992). Assessment in context: The alternative to standardized testing. In Gifford, B. R. & O'Connor, M. C. (Eds.), Changing assessments: Alternative views of aptitude, achievement, and instruction (pp. 77120). Boston, MA: Kluwer Academic Publishers.Google Scholar
Gates Foundation. (2011). Supporting students: Investing in innovation and quality. College Ready Monograph Series. Seattle, WA. Retrieved from https://docs.gatesfoundation.org/documents/supporting-students.pdf.Google Scholar
Gerstein, J. (2013). I Don't Get Digital Badges. User generated education [blog]. Retrieved from https://usergeneratededucation.wordpress.com/2013/03/16/i-dont-get-digital-badges.Google Scholar
Grant, S. (2014). What counts As learning. Digital Median and Learning Research Hub. Retrieved from https://dmlhub.net/publications/what-counts-learning.Google Scholar
Greene, D., Sternberg, B., & Lepper, M. R. (1976). Overjustification in a token economy. Journal of Personality and Social Psychology, 34(6), 1219–34. doi: 10.1037/0022-3514.34.6.1219.Google Scholar
Greeno, J. G. (1998). The situativity of knowing, learning, and research. American Psychologist, 53(1), 526. doi: 10.1037/0003-066X.53.1.5.Google Scholar
Halverson, R. (2004). Accessing, documenting, and communicating practical wisdom: The phronesis of school leadership practice. American Journal of Education, 111(1), 90121. doi: 0195-6744/2004/11101-0004$05.00Google Scholar
Hickey, D. T. (2003). Engaged participation versus marginal nonparticipation: A stridently sociocultural approach to achievement motivation. The Elementary School Journal, 103(4), 401–29. doi: 0013-5984/2003/10304-0006$05Google Scholar
Hickey, D. T. & Otto, N. (2017). “Endorsement 2.0” is about to transform eCredentials. EDUCAUSE Review [online]. Retrieved from https://er.educause.edu/articles/2017/2/endorsement-2-taking-open-badges-and-ecredentials-to-the-next-level.Google Scholar
Hickey, D. T. & Willis, J. E. (2015). Research designs for studying individual and collaborative learning with digital badges. In Proceedings of the Second Annual Open Badges in Education Workshop, Poughkeepsie, NY (pp. 3640). Retrieved from http://ceur-ws.org/Vol-1358/paper5.pdf.Google Scholar
Hickey, D. T. & Willis, J. E. (2017). Where badges appear to work better. Final Report of the Design Principles Documentation Project. Indiana University. Center for Research on Learning and Technology. Retrieved from http://bit.ly/2DPDfinalreport.Google Scholar
Hickey, D. T. & Zuiker, S. J. (2012). Multilevel assessment for discourse, understanding, and achievement. Journal of the Learning Sciences, 21(4), 522–82. doi: 10.1080/10508406.2011.652320.Google Scholar
Hidi, S. (2016). Revisiting the role of rewards in motivation and learning: Implications of neuroscientific research. Educational Psychology Review, 28(1), 6193. doi: 10.1007/s10648-015-9307-5.Google Scholar
Hidi, S. & Anderson, V. (2014). Situational interest and its impact on reading and expository writing. In Renninger, A., Hidi, S., & Krapp, A., (Eds.), The Role of interest in learning and development (pp. 215–38). New York, NY: Psychology Press. (Reprinted from 1992).Google Scholar
Hidi, S. & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–27. doi: 10.1207/s15326985ep4102_4.Google Scholar
Ito, M. (2012). Reflections on DML 2012 and a vision of educational change. [blog post at DML Central]. Retrieved from http://dmlcentral.net/blog/mimi-ito/reflections-dml2012-and-visions-educational-change.Google Scholar
Järvelä, S., Volet, S., & Järvenoja, H. (2010). Research on motivation in collaborative learning: Moving beyond the cognitive–situative divide and combining individual and social processes. Educational Psychologist, 45(1), 1527. doi: 10.1080/00461520903433539.Google Scholar
Jenkins, H. (2012). How to earn your skeptic “badge.” Confessions of an Aca-Fan. The official blog of Henry Jenkins. Retrieved from http://henryjenkins.org/2012/03/how_to_earn_your_skeptic_badge.html.Google Scholar
Jenkins, H., Purushotma, R., Weigel, M., Clinton, K., & Robison, A. J. (2009). Confronting the challenges of participatory culture: Media education for the 21st century. Cambridge, MA: MIT Press.Google Scholar
Kohn, A. (1999). Punished by rewards: The trouble with gold stars, incentive plans, A's, praise, and other bribes. Boston, MA: Houghton Mifflin Harcourt.Google Scholar
Kohn, A. (2014). Keynote presentation at the 12th Annual e-Portfolio, Open Badges, and Identity Conference, London, England. Retrieved from www.youtube.com/watch?v=p_98XcxJqkw.Google Scholar
Kolowich, S. (2014). Can digital “badges” and “nanodegrees” protect job seekers from a first-round knockout? Chronicle of Higher Education. Retrieved from www.chronicle.com/article/Can-Digital-Badges-and/150257.Google Scholar
Kruchten, P. (2004). The rational unified process: An introduction. New York, NY: Addison-Wesley.Google Scholar
Lamal, P. A. (1990). Behavioral analysis of societies and cultural practices. New York, NY: Taylor & Francis.Google Scholar
Lepper, M. R., Greene, D., & Nisbett, R. E. (1973). Undermining children's intrinsic interest with extrinsic reward: A test of the “overjustification” hypothesis. Journal of Personality and Social Psychology, 28(1), 129–37.Google Scholar
Leuba, M. (2015). Competency-based education: Technology challenges and opportunities. EDUCAUSE Review [online]. Retrieved from http://er.educause.edu/articles/2015/10/competency-based-education-technology-challenges-and-opportunities.Google Scholar
Mallon, M. (2013). Gaming and gamification. Public Services Quarterly, 9(3), 210–21. doi: 10.1080/15228959.2013.815502.Google Scholar
Malone, T. W. & Lepper, M. R. (1987). Making learning fun: A taxonomy of intrinsic motivations for learning. In Snow, R. E. & Farr, M. J. (Eds.), Aptitude, learning, and instruction, Vol. 3, conative and affective process analysis (pp. 223–53). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
Metzger, E. C., Lubin, L., Patten, R. T., & Whyte, J. (2016). Applied gamification: Creating reward systems for organizational professional development. In D. Ifenthaler, N. Belin-Mularski, & D. Mah (Eds.) Foundation of digital badges and micro-credentials (pp. 457–66). NYC, NY: Springer International Publishing. doi: 10.1007/978-3-319-15425-1.Google Scholar
Moss, P. A. (2003). Reconceptualizing validity for classroom assessment. Educational Measurement: Issues and Practice, 22(4), 1325. doi: 10.1111/j.1745-3992.2003.tb00140.x.Google Scholar
National Research Council. (2001). Knowing what students know: The science and design of educational assessment. Washington, DC: National Academies Press.Google Scholar
Nicholson, S. (2012). A user-centered theoretical framework for meaningful gamification. Games, Learning & Society, 8(1), 223–30.Google Scholar
Nolen, S. B., Horn, I. S., & Ward, C. J. (2015). Situating motivation. Educational Psychologist, 50(3), 234–47. doi: 10.1080/00461520.2015.1075399.Google Scholar
Olneck, M. (2015). Whom will digital badges empower? Sociological perspectives on digital badges. In Hickey, D. T., Jovanovic, J., Lonn, S., & Willis, J.E. III (Eds.), Proceedings of the Second International Open Badges in Education Workshop (pp. 511), Workshop, Poughkeepsie, NY. Retrieved from http://ceur-ws.org/Vol-1358/paper1.pdfGoogle Scholar
Oyserman, D. (2015). Pathways to success through identity-based motivation. Oxford, UK: Oxford University Press.Google Scholar
Pink, D. H. (2011). Drive: The surprising truth about what motivates us. New York, NY: Penguin.Google Scholar
Ravet, S. (2014). #Openbadges for key competencies. Learning futures: Reflections on learning, technologies, identities, and trust [blog post]. Retrieved from http://www.learningfutures.eu/2014/12/openbadges-for-key-competencies/Google Scholar
Ravet, S. (2015). #OpenBadges: Beyond “Spray and pray”! Learning futures [blog post]. Retrieved from www.learningfutures.eu/2015/02/openbadges-beyond-spray-and-pray.Google Scholar
Resnick, M. (2012). Still a badge skeptic [blog post]. Retrieved from http://hastac.org/blogs/mres/2012/02/27/still-badge-skeptic.Google Scholar
Rieber, L. P. (1996). Seriously considering play: Designing interactive learning environments based on the blending of microworlds, simulations, and games. Educational Technology Research and Development, 44(2), 4358. doi: 10.1007/BF02300540.Google Scholar
Shavelson, R. J., Baxter, G. P., & Pine, J. (1992). Research news and comment: Performance assessments: Political rhetoric and measurement reality. Educational Researcher, 21(4), 22–7. doi: 10.3102/0013189X021004022.Google Scholar
Shepard, L. A. (2000). The role of assessment in a learning culture. Educational Researcher, 29(7), 414.Google Scholar
Silva, E., White, T., & Toch, T. (2015). The Carnegie Unit: A century-old standard in a changing educational landscape. New York: Carnegie Foundation for the Advancement of Teaching. Retrieved from www.carnegiefoundation.org/resources/publications/carnegie-unit.Google Scholar
Skinner, B. F. (1953). Science and human behavior. Santa Monica, CA: Simon and Schuster.Google Scholar
Steele, J. L., Lewis, M., Santibanez, L., Faxon-Mills, S., Rudnick, B., Stecher, B., & Hamilton, L. (2014). Competency-based education in three pilot programs: Examining implementation and outcomes. Santa Monica, CA: RAND Corporation. Retrieved from www.rand.org/pubs/research_reports/RR732.html.Google Scholar
Thigpen, K. (2014). Digital badge systems: The promise and potential. Washington, DC: The Alliance for Excellent Education. Retrieved from http://all4ed.org/wp-content/uploads/2014/11/DigitalBadgeSystems.pdf.Google Scholar
Todorov, J. C. (2013). Conservation and transformation of cultural practices through contingencies and metacontingencies. Behavior and Social Issues, 22, 6473. doi: 10.521/bsi.v.22i0.4612.Google Scholar
Torrance, H. (2012). Formative assessment at the crossroads: Conformative, deformative and transformative assessment. Oxford Review of Education, 38(3), 323–42. doi: 10.1080/03054985.2012.689693.Google Scholar
Tran, C., Schenke, K., & Hickey, D. T. (2014). Design principles for motivating learning with digital badges: Consideration of contextual factors of recognition and assessment. In Polman, J. L., Kyza, E. A., O'Neill, D. K., Tabak, I., Penuel, W. R., Jurow, A. S., ... D'Amico, L. (Eds.), Learning and becoming in practice: The International Conference of the Learning Sciences (ICLS) 2014, Volume 1 (pp. 10271032). Boulder, CO: The International Society of the Learning Sciences.Google Scholar
Xenos, M. & Foot, K. (2008). Not your father's Internet: The generation gap in online politics. In Bennett, W. L. (Ed.), Civic life online: Learning how digital media can engage youth, (pp. 5170). Cambridge, MA: The MIT Press.Google Scholar
Young, J. R. (2012). “Badges” earned online pose challenge to traditional college diplomas. The Education Digest, 78(2), 4852.Google Scholar
Yowell, C. M. (2014). Presentation at the Open Badges Summit to Reconnect Learning. Retrieved from http://vimeo.com/87127953.Google Scholar
Yowell, C. M. & Smylie, M. A. (1999). Self-regulation in democratic communities. The Elementary School Journal, 99(5), 469–90. doi: 10.1086/461936.Google Scholar

References

Amabile, T. M. & Gitomer, J. (1984). Children's artistic creativity: Effects of choice in task materials. Personality and Social Psychology Bulletin, 10, 209–15. doi: 10.1177/0146167284102006.Google Scholar
Ames, C. (1992). Classrooms: Goals, structures, and student motivation. Journal of Educational Psychology, 84, 261–71. doi: 10.1037/0022-0663.84.3.261.Google Scholar
Aoki, R., Matsumoto, M., Yomogida, Y., Izuma, K., Murayama, K., Sugiura, A., ... Matsumoto, K. (2014). Social equality in the number of choice options is represented in the ventromedial prefrontal cortex. Journal of Neuroscience, 34, 6413–21.Google Scholar
Assor, A., Kaplan, H., & Roth, G. (2002). Choice is good, but relevance is excellent: Autonomy-enhancing and suppressing teacher behaviours predicting students’ engagement in schoolwork. British Journal of Educational Psychology, 72, 261–78. doi: 10.1348/000709902158883.Google Scholar
Bandura, A. (1989). Human agency in social cognitive theory. American Psychologist, 44, 11751184. doi: 10.1037/0003-066X.44.9.1175.Google Scholar
Bao, X. & Lam, S. (2008). Who makes the choice? Rethinking the role of autonomy and relatedness in Chinese children's motivation. Child Development, 79, 269–83. doi: 10.1111/j.1467-8624.2007.01125.x.Google Scholar
Baumeister, R. F. & Leary, M. R. (1995). The need to belong: Desire for interpersonal attachments as a fundamental human motivation. Psychological Bulletin, 117, 497529. doi: 10.1037/0033-2909.117.3.497.Google Scholar
Beyers, W., Goossens, L., Vansant, I., & Moors, E. (2003). A structural model of autonomy in middle and late adolescence: Connectedness, separation, detachment, and agency. Journal of Youth and Adolescence, 32, 351–65. doi: 10.1023/A:1024922031510.Google Scholar
Bjork, R. A., Dunlosky, J., & Kornell, N. (2013). Self-regulated learning: Beliefs, techniques, and illusions. Annual Review of Psychology, 64, 417–44.Google Scholar
Brown-Wright, L., Tyler, K. M., Graves, S. L., Thomas, D., Stevens-Watkins, D., & Mulder, S. (2013). Examining the associations among home–school dissonance, amotivation, and classroom disruptive behavior for urban high school students. Education and Urban Society, 45, 142–62. doi: 10.1177/0013124511408715.Google Scholar
Cepeda, N. J., Pashler, H., Vul, E., Wixted, J. T., & Rohrer, D. (2006). Distributed practice in verbal recall tasks: A review and quantitative synthesis. Psychological Bulletin, 132, 354–80. doi: 10.1037/0033-2909.132.3.354.Google Scholar
Chen, B., Vansteenkiste, M., Beyers, W., Boone, L., Deci, E. L., Van der Kaap-Deeder, J., ... Verstuyf, J. (2015). Basic psychological need satisfaction, need frustration, and need strength across four cultures. Motivation and Emotion, 39, 216–36. doi: 10.1007/s11031-014-9450-1.Google Scholar
Cloutier, J. & Macrae, N. (2008). The feeling of choosing: Self-involvement and the cognitive status of things past. Consciousness and Cognition, 17, 125–35. doi: 10.1016/j.concog.2007.05.010.Google Scholar
Cordova, D. I. & Lepper, M. R. (1996). Intrinsic motivation and the process of learning: Beneficial effects of contextualization, personalization, and choice. Journal of Educational Psychology, 88, 715–30. doi: 10.1037/0022-0663.88.4.715.Google Scholar
Cunningham, S. J., Brady-Van den Bos, M., & Turk, D. J. (2011). Exploring the effects of ownership and choice on self-memory biases. Memory, 19, 449–61. doi: 10.1080/09658211.2011.584388.Google Scholar
Dawes, R. M. (1976). Shallow psychology. In Carroll, J. S. & Payne, J. W. (Eds.), Cognition and social behavior (pp. xiii, 290). Oxford: Lawrence Erlbaum.Google Scholar
deCharms, R. (1968). Personal causation. New York, NY: Academic Press.Google Scholar
Deci, E. L. & Ryan, R. M. (1985). The general causality orientations scale: Self-determination in personality. Journal of Research in Personality, 19, 109–34. doi: 10.1016/0092-6566(85)90023-6.Google Scholar
Deci, E. L. & Ryan, R. M. (2014). Autonomy and need satisfaction in close relationships: Relationships motivation theory. In Weinstein, N. (Ed.), Human motivation and interpersonal relationships (pp. 5373). Dordrecht: Springer Netherlandss. doi: 10.1007/ 978-94-017-8542-6_3.Google Scholar
Eccles, J. S., Midgley, C., Wigfield, A., Buchanan, C. M., Reuman, D., Flanagan, C., & MacIver, D. (1993). Development during adolescence: The impact of stage-environment fit on young adolescents’ experiences in schools and in families. American Psychologist, 48, 90101. doi: 10.1037/0003-066X.48.2.90.Google Scholar
Flowerday, T. & Schraw, G. (2000). Teacher beliefs about instructional choice: A phenomenological study. Journal of Educational Psychology, 92, 634–45. doi: 10.1037/0022-0663.92.4.634.Google Scholar
Flowerday, T. & Schraw, G. (2003). Effect of choice on cognitive and affective engagement. The Journal of Educational Research, 96, 207–15. doi: 10.1080/00220670309598810.Google Scholar
Flowerday, T., Schraw, G., & Stevens, J. (2004). The role of choice and interest in reader engagement. The Journal of Experimental Education, 72, 93114. doi: 10.3200/JEXE.72.2.93-114.Google Scholar
Flowerday, T. & Shell, D. F. (2015). Disentangling the effects of interest and choice on learning, engagement, and attitude. Learning and Individual Differences, 40, 134–40. doi: 10.1016/j.lindif.2015.05.003.Google Scholar
Fujiwara, J., Usui, N., Park, S. Q., Williams, T., Iijima, K., Taira, M., ... Tobler, P. N. (2013). Value of freedom to choose encoded by the human brain. Journal of Neurophysiology, 110(8), 1915–29. doi: 10.1152/jn.01057.2012.Google Scholar
Gottfried, A. E., Fleming, J. S., & Gottfried, A. W. (2001). Continuity of academic intrinsic motivation from childhood through late adolescence: A longitudinal study. Journal of Educational Psychology, 93, 313. doi: 10.1037/0022-0663.93.1.3.Google Scholar
Grotevant, H. D. & Cooper, C. R. (1986). Individuation in family relationships. Human Development, 29, 82100. doi: 10.1159/000273025.Google Scholar
Hagger, M. S., Rentzelas, P., & Chatzisarantis, N. L. D. (2014). Effects of individualist and collectivist group norms and choice on intrinsic motivation. Motivation and Emotion, 38, 215–23. doi: 10.1007/s11031-013-9373-2.Google Scholar
Hajcak, G. & Foti, D. (2008). Errors are aversive: Defensive motivation and the error-related negativity. Psychological Science, 19, 103–8. doi: 10.1111/ j.1467-9280.2008.02053.x.Google Scholar
Henry, R. A. (1994). The effects of choice and incentives on the overestimation of future performance. Organizational Behavior and Human Decision Processes, 57, 210–25. doi: 10.1006/obhd.1994.1012.Google Scholar
Henry, R. A. & Sniezek, J. A. (1993). Situational factors affecting judgments of future performance. Organizational Behavior and Human Decision Processes, 54, 104–32. doi: 10.1006/obhd.1993.1005.Google Scholar
Hidi, S. (2015). Revisiting the role of rewards in motivation and learning: Implications of neuroscientific research. Educational Psychology Review, 28(1), 6193. doi: 10.1007/s10648-015-9307-5.Google Scholar
Hidi, S. & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41, 111–27. doi: 10.1207/s15326985ep4102_4.Google Scholar
Hidi, S., Renninger, K. A., & Northoff, G. (2017). The development of interest and self-related processing. In Guay, F., Marsh, H. W., McInerney, D. M., & Craven, R. G. (Eds.), International advances in self research, Vol. 6: SELF – Driving positive psychology and well-being (pp. 5170). Charlotte, NC: Information Age Press.Google Scholar
Hill, J. P. & Holmbeck, G. N. (1986). Attachment and autonomy during adolescence. Annals of Child Development, 3, 145–89.Google Scholar
Hirano, T. & Ukita, J. (2003). Choosing words at the study phase: The self-choice effect on memory from the viewpoint of connective processing. Japanese Psychological Research, 45, 3849.Google Scholar
Holroyd, C. B. & Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679709. doi: 10.1037/0033-295X.109.4.679.Google Scholar
Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005). Neural systems responding to degrees of uncertainty in human decision making. Science, 310, 1680–3.Google Scholar
Humphreys, G. W. & Sui, J. (2015). The salient self: Social saliency effects based on self-bias. Journal of Cognitive Psychology, 27, 129–40. doi: 10.1080/ 20445911.2014.996156.Google Scholar
Iyengar, S. (2010). The art of choosing. New York: Grand Central Publishing.Google Scholar
Iyengar, S. S. & DeVoe, S. E. (2003). Rethinking the value of choice: Considering cultural mediators of intrinsic motivation. In Murphy-Berman, V. & Berman, J. J. (Eds.), Nebraska symposium on motivation. Cross-cultural differences in perspectives on the self (Vol. 49, pp. 129–74). Lincoln: University of Nebraska Press.Google Scholar
Iyengar, S. S. & Lepper, M. R. (1999). Rethinking the value of choice: a cultural perspective on intrinsic motivation. Journal of Personality and Social Psychology, 76, 349.Google Scholar
Iyengar, S. S. & Lepper, M. R. (2000). When choice is demotivating: Can one desire too much of a good thing? Journal of Personality and Social Psychology, 79(6), 9951006. doi: 10.1037/0022-3514.79.6.995.Google Scholar
Jacobs, J. E. & Eccles, J. S. (2000). Parents, task values, and real-life achievement-related choices. In Sansone, C. & Harackiewicz, J. (Eds.), Intrinsic and Extrinsic Motivation: The Search for Optimal Motivation and Performance (pp. 405–39). San Diego, CA: Academic Press.Google Scholar
Jang, H., Reeve, J., & Deci, E. L. (2010). Engaging students in learning activities: It is not autonomy support or structure but autonomy support and structure. Journal of Educational Psychology, 102, 588600. doi: 10.1037/a0019682.Google Scholar
Kahneman, D., Slovic, P., & Tversky, A. (1982). Judgment under uncertainty: Heuristics and Biases. Cambridge, UK: Cambridge University Press.Google Scholar
Katz, I. & Assor, A. (2007). When choice motivates and when it does not. Educational Psychology Review, 19, 429. doi: 10.1007/s10648-006-9027-y.Google Scholar
Klein, S. B. & Loftus, J. (1988). The nature of self-referent encoding: The contributions of elaborative and organizational processes. Journal of Personality and Social Psychology, 55, 511. doi: 10.1037/0022-3514.55.1.5.Google Scholar
Kornell, N. & Metcalfe, J. (2006). Study efficacy and the region of proximal learning framework. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 609–22. doi: 10.1037/0278-7393.32.3.609.Google Scholar
Langer, E. J. (1975). The illusion of control. Journal of Personality and Social Psychology, 32, 311.Google Scholar
Legault, L. & Inzlicht, M. (2013). Self-determination, self-regulation, and the brain: Autonomy improves performance by enhancing neuroaffective responsiveness to self-regulation failure. Journal of Personality and Social Psychology, 105(1), 123–38.Google Scholar
León, J., Núñez, J. L., & Liew, J. (2015). Self-determination and STEM education: Effects of autonomy, motivation, and self-regulated learning on high school math achievement. Learning and Individual Differences, 43, 156–63. doi: 10.1016/j.lindif.2015.08.017.Google Scholar
Leotti, L. A. & Delgado, M. R. (2011). The inherent reward of choice. Psychological Science, 22, 1310–18. doi: 10.1177/0956797611417005.Google Scholar
Leotti, L. A. & Delgado, M. R. (2014). The value of exercising control over monetary gains and losses. Psychological Science, 25, 596604. doi: 10.1177/0956797613514589.Google Scholar
Leotti, L. A., Iyengar, S. S., & Ochsner, K. N. (2010). Born to choose: The origins and value of the need for control. Trends in Cognitive Sciences, 14, 457–63. doi: 10.1016/j.tics.2010.08.001.Google Scholar
Lepper, M. R., Corpus, J. H., & Iyengar, S. S. (2005). Intrinsic and extrinsic motivational orientations in the classroom: Age differences and academic correlates. Journal of Educational Psychology, 97, 184–96. doi: 10.1037/0022-0663.97.2.184.Google Scholar
Leroy, N. & Bressoux, P. (2016). Does amotivation matter more than motivation in predicting mathematics learning gains? A longitudinal study of sixth-grade students in France. Contemporary Educational Psychology, 44–45, 4153. doi: 10.1016/j.cedpsych.2016.02.001.Google Scholar
Lewin, K. (1952). Selected theoretical papers. In Field Theory in Social Science. London: Social Science Paperbacks.Google Scholar
Linnenbrink-Garcia, L., Patall, E. A., & Messersmith, E. E. (2013). Antecedents and consequences of situational interest. British Journal of Educational Psychology, 83, 591614. doi: 10.1111/j.2044-8279.2012.02080.x.Google Scholar
Lisman, J. E., & Grace, A. A. (2005). The hippocampal-VTA loop: Controlling the entry of information into long-term memory. Neuron, 46(5), 703–13. doi: 10.1016/j.neuron.2005.05.002.Google Scholar
Luu, P., Collins, P., & Tucker, D. M. (2000). Mood, personality, and self-monitoring: Negative affect and emotionality in relation to frontal lobe mechanisms of error monitoring. Journal of Experimental Psychology: General, 129, 4360. doi: 10.1037/0096-3445.129.1.43.Google Scholar
Markus, H. R. & Kitayama, S. (1991). Culture and the self: Implications for cognition, emotion, and motivation. Psychological Review, 98, 224–53. doi: 10.1037/0033-295X.98.2.224.Google Scholar
Metcalfe, J. (2009). Metacognitive judgments and control of study. Current Directions in Psychological Science, 18, 159–63. doi: 10.1111/j.1467-8721.2009.01628.x.Google Scholar
Midgley, C. & Feldlaufer, H. (1987).