Skip to main content Accessibility help
×
Hostname: page-component-546b4f848f-lx7sf Total loading time: 0 Render date: 2023-05-30T22:45:14.527Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Part III - Creativity in the Sciences

Published online by Cambridge University Press:  15 September 2017

James C. Kaufman
Affiliation:
University of Connecticut
Vlad P. Glăveanu
Affiliation:
Universitetet i Bergen, Norway
John Baer
Affiliation:
Rider University, New Jersey
Get access

Summary

Abstract

It is not uncommon for people to gloss over the high degree of creativity involved in science. The physical sciences (physics, chemistry, geology, and astronomy) would not be where they are today without extremely creative insights and solutions to both experimental and theoretical problems. In this chapter I review the vast and growing psychological literature on creativity in the physical sciences. I do so by organizing the studies by their overarching methodology, namely psychometric, experimental, biographical, historiometric, and biometric. I begin, however, by first defining creativity and how it is measured in the physical sciences. I end by pointing out some of the important gaps in our understanding of creativity in the physical sciences, such as the biological, genetic, epigenetic, and neuroscientific foundations of creative talent in the physical sciences, why still so few women are entering the profession, and whether personality traits distinguish those who are interested in and have talent for the physical sciences compared to the social and biological sciences.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Amabile, T. (1996). Creativity in context. Boulder, CO: Westview.
Baron-Cohen, S., Wheelwright, S., Stott, C., Bolton, P., & Goodyer, I. (1997). Is there a link between engineering and autism? Autism, 1, 101109.
Baron-Cohen, S., Bolton, P., Wheelwright, S., Short, L., Mead, G., Smith, A., & Scahill, V. (1998). Autism occurs more often in families of physicists, engineers, and mathematicians, Autism, 2, 296301.
Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The Autism-Spectrum Quotient (AQ): Evidence from Asperger Syndrome/High-Functioning Autism, males and females, scientists and mathematicians, Journal of Autism & Developmental Disorders, 31, 517.
Bayer, A. E., & Dutton, J. E. (1977). Career age and research–professional activities of academic scientists: Tests of alternative non-linear models and some implications for higher education faculty policies. Journal of Higher Education, 48, 259282.
Benbow, C. P., & Stanley, J. C. (1983). Sex differences in mathematical reasoning ability: More facts. Science, 222, 10291031.
Berger, J. (1994). The young scientists: America’s future and the winning of the Westinghouse. Reading, MA: Addison-Wesley.
Billington, J., Baron-Cohen, S., & Wheelwright, S. (2007). Cognitive style predicts entry into physical sciences and humanities: Questionnaire and performance tests of empathy and systemizing. Learning and Individual Differences, 17, 260268.
Brink, T. L. (1980). Idiot savant with unusual mechanical ability: An organic explanation. The American Journal of Psychiatry, 137(2), 250251.
Brody, L. E., & Mills, C. J. (2005). Talent search research: What have we learned? High Ability Studies, 16, 97111.
Bunge, S. A., Wendelken, C., Badre, D., & Wagner, A. D. (2005). Analogical reasoning and prefrontal cortex: Evidence for separable retrieval and integration mechanisms. Cerebral Cortex, 15, 239249.
Byrne, R. W. (2001). Social and technical forms of primate intelligence. In deWaal, F. B. M. (Ed.), Tree of origin: What primate behavior can tell us about human social evolution (pp. 145172). Cambridge: Harvard University Press.
Cacioppo, J. T., Petty, R. E., & Kao, C. F. (1984). The efficient assessment of need for cognition. Journal of Personality Assessment, 48, 306307.
Carey, S., & Spelke, E. (1994). Domain specific knowledge and conceptual change. In Hirschfeld, L. A and Gelman, S. A. (Eds.). Mapping the mind: Domain specificity in cognition and culture, (pp. 169200). Cambridge, England: Cambridge University Press.
Carruthers, P., Stich, S., & Siegal, M. (Eds.). (2002). The cognitive basis of science. Cambridge, England: Cambridge University Press.
Cattell, R. B. (1963). The personality and motivation of the researcher from measurements of contemporaries and from biography. In Taylor, C. W. & Barron, F. X. (Eds.). Scientific creativity (pp. 119131). New York: Wiley.
Ceci, S. J., & Williams, W. (Eds.). (2007). Why aren’t more women in science? Top researchers debate the evidence. Washington, DC: American Psychological Association Books.
Ceci, S. J., & Williams, W. (2010). The mathematics of sex: How biology and society conspire to limit talented women and girls. Oxford, England: Oxford University Press.
Christensen, B. T., & Schunn, C. D. (2007). The relationship of analogical distance to analogical function and preinventive structure: The case of engineering design. Memory & Cognition, 35(1), 2938. DOI:10.3758/BF03195939
Chung, K. H., & Cox, R. A. K. (1990). Patterns of productivity in the finance literature: A study of the bibliometric distributions. Journal of Finance, 45, 301309. DOI:10.1111/j.1540-6261.1990.tb05095.x
Clement, J. (1991). Experts and science students: The use of analogies, extreme cases, and physical intuition. In Voss, J. E, Perkins, D. N., & Segal, J. W. (Eds.), Informal reasoning and education (pp. 345362). Hillsdale, NJ: Erlbaum.
Cohen, A. R., Stotland, E., & Wolfe, D. M. (1955). An experimental investigation of need for cognition. Journal of Abnormal and Social Psychology, 51, 291294.
Cole, J. R., & Cole, S. (1973). Social stratification in science. Chicago: University of Chicago Press.
Cole, J. R., & Zuckerman, H. (1987). Marriage, motherhood, and research performance in science. Scientific American, 256, 119125.
Cole, S. (1979). Age and scientific performance. American Journal of Sociology, 84, 958977.
Cox, C. (1926). Genetic studies of genius: Volume II – The early mental traits of 300 geniuses. Stanford, CA: Stanford University Press.
Csikszentihalyi, M., Rathunde, K., & Whalen, S. (1997). Talented teenagers: The roots of success and failure. New York: Cambridge University Press.
Davidson, K. (1999). Carl Sagan: A life. New York: Wiley & Sons.
Deary, I. J., Strand, S., Smith, P., & Fernandes, C. (2007). Intelligence and educational achievement. Intelligence, 35, 1321.
Deary, I. J., Thorpe, G., Wilson, V., Starr, J.M., & Whalley, L. J. (2003). Population sex differences in IQ at age 11: The Scottish mental survey 1932. Intelligence, 31, 533542. DOI: 10.1016/S0160-2896(03)00053-9.
Dennis, W. (1956). Age and productivity among scientists. Science, 123, 724725.
Dennis, W. (1966). Creative productivity between the ages of 20 and 80 years. Journal of Gerontology, 21, 18.
Diamond, A. M. (1986). The life-cycle research productivity of mathematicians and scientist. Journal of Gerontology, 41, 520525.
Dunbar, K. (1995). How scientists really reason: Scientific reasoning in real-world laboratories. In Sternberg, R. J. & Davidson, J. E. (Eds.), The nature of insight (pp. 365395). Cambridge, MA: MIT Press.
Dunbar, K., & Blanchette, I. (2001). The in vivo⁄in vitro approach to cognition: The case of analogy. TRENDS in Cognitive Science, 5, 334339.
Edge, The Third Culture (2005) The science of gender and science: Pinker vs. Spelke, a debate, May 16. Retrieved on September 24, 2015, from http://edge.org/3rd_culture/debate05/debate05_index.html.
Einhorn, H. J., & Hogarth, R. M. (1978). Confidence in judgment: Persistence of the illusion of validity. Psychological Review, 85, 395416.
Eysenck, H. J. (1993). Word association, origence and psychoticism. Creativity Research Journal, 7, 209216.
Eysenck, H. J. (1995). Genius: The natural history of creativity. Cambridge, UK: Cambridge University Press.
Falk-Krzesinski, H. J., Börner, K., Contractor, N., Fiore, S. M., Hall, K. L., Keyton, J., & Uzzi, B. (2010). Advancing the science of team science. Clinical and Translational Science, 3, 263266.
Feist, G. J. (1993). A structural model of scientific eminence. Psychological Science, 4, 366371.
Feist, G. J. (1997). Quantity, quality, and depth of research as influences on scientific eminence: Is quantity most important? Creativity Research Journal, 10, 325335. DOI:10.1207/s15326934crj1004_4
Feist, G. J. (1998). A meta-analysis of the impact of personality on scientific and artistic creativity. Personality and Social Psychological Review, 2, 290309.
Feist, G. J. (2001). Three perspectives on evolution, creativity, and aesthetics. Bulletin of Psychology and the Arts, 2, 3.
Feist, G. J. (2006a). How development and personality influence scientific thought, interest, and achievement. Review of General Psychology, 10, 163182.
Feist, G. J. (2006b). The development of scientific talent in Westinghouse finalists and members of the National Academy of Sciences. Journal of Adult Development, 13, 2335. DOI: 10.1007/s10804-006-9002-3.
Feist, G. J. (2006c). The psychology of science and the origins of the scientific mind. New Haven, CT: Yale University Press.
Feist, G. J. (2011). Psychology of science as a new subdiscipline in psychology. Current Directions in Psychological Science, 20, 330334. DOI: 10.1177/0963721411418471
Feist, G. J. (2012). Predicting interest in and attitudes toward science from personality and need for cognition. Personality and Individual Differences, 52, 771775. DOI:10.1016/j.paid.2012.01.005
Fonlupt, P. (2003). Perception and judgment of physical causality involve different brain structures. Cognitive Brain Research, 17, 248254.
Francis, B., Skelton, C., & Read, B. (2012). The identities and practices of high achieving pupils: Negotiating achievement and peer cultures. London: Continuum International Publishing Group.
Gallagher, A. M., & DeLisi, R. (1994). Gender differences in Scholastic Aptitude Test – Mathematics problem solving among high ability students. Journal of Educational Psychology, 86, 204211.
Gallagher, A. M., & Kaufman, J. C. (Eds.). (2005). Gender differences in mathematics: An integrative psychological approach. New York: Cambridge University Press.
Gardner, H. (1983). Frames of mind: The theory of multiple intelligences. New York: Basic Books.
Gardner, H. (1999). Intelligence reframed: Multiple intelligences for the 21st century. New York: Basic Books.
Geary, D. C., & Huffman, K. J. (2002). Brain and cognitive evolution: Forms of modularity and functions of mind. Psychological Bulletin, 128, 667698.
Gentner, D., & Jeriorski, M. (1989). Historical shifts in the use of analogy in science. In Gholson, B., Shadish, W. R., Neimeyer, R. A., & Houts, A. C. (Eds.), Psychology of science: Contributions to metascience (pp. 296325). Cambridge, England: Cambridge University Press.
Gibson, J., & Light, P. (1967). Intelligence among university scientists. Nature, 213(5075), 441443. DOI:10.1038/213441a0
Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 138.
Gleick, J. (1992). Genius: The life and science of Richard Feynman. New York: Pantheon.
Gleick, J. (2003). Isaac Newton. New York: Pantheon.
Goodchild, P. (1980). J. Robert Oppenheimer: Shatterer of worlds. Boston: Houghton Mifflin.
Gopnik, A., Meltzoff, A. N., & Kuhl, P. K. (1999). The scientist in the crib: Minds, brains, and how children learn. New York: William Morrow and Co.
Gorman, M. E. (1992). Simulating science: Heuristics, mental models, and technoscientific thinking. Bloomington, IN: Indiana University Press.
Gorman, M. E. (2013). The psychology of technological invention. In Feist, G. J. & Gorman, M. E. (Eds.), Handbook of the psychology of science (pp. 383396). New York, NY: Springer Publishing Co.
Gough, H. G. (1987). California Psychological Inventory: Administrators guide. Palo Alto, CA: Consulting Psychologists Press.
Green, A. E., Kraemer, D. J. M., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2010). Connecting long distance: Semantic distance in analogical reasoning modulates frontopolar cortex activity. Cerebral Cortex, 20, 7076. DOI: 10.1093/cercor/bhp081.
Gorman, M. E., Stafford, A., & Gorman, M. E. (1987). Disconfirmation and dual hypotheses on a more difficult version of Wason’s 2–4–6 task. The Quarterly Journal of Experimental Psychology, Section A, 39, 128.
Grosul, M., & Feist, G. J. (2014). The creative person in science. Psychology of Aesthetics, Creativity, and the Arts, 3043. DOI:10.1037/a0034828.
Guilford, J. P. (1950). Creativity. American Psychologist, 5, 444454.
Gupta, D. K. (1987). Lotka’s law and productivity patterns of entomological research in Nigeria for the period, 1900–1973. Scientometrics, 12, 3346. DOI:10.1007/BF02016688
Harmon, L. R. (1961). The High School background of science doctorates: A survey reveals the influence of class size, region of origin, as well as ability, in PhD production. Science, 133, 679688.
Hecht, D. K. (2015). Storytelling and science: Rewriting Oppenheimer in the Nuclear Age. Amherst, MA: University of Massachusetts Press.
Hedges, L. V., & Nowell, A. (1995). Sex differences in mental test scores, variability, and numbers of high-scoring individuals. Science, 269, 4145.
Helson, R., & Crutchfield, R. S. (1970). Mathematicians: The creative researcher and the average PhD. Journal of Consulting and Clinical Psychology, 34, 250257.
Hemlin, S., & Olsson, L. (2013). The psychology of research groups: Creativity and performance. In Feist, G. J. & Gorman, M. E. (Eds.), Handbook of the psychology of science (pp. 397418). New York: Springer Publishing.
Herrnstein, R. J., & Murray, C. (1994). The bell-curve: Intelligence and class structure in American life. New York: Free Press.
Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. PNAS: Proceedings of the National Academy of Science, 102, 1656916572. DOI:10.1073/pnas.0507655102
Horner, K. L., Rushton, J. P., & Vernon, P. A. (1986). Relation between aging and research productivity of academic psychologists. Psychology and Aging, 4, 319324.
Huang, S. H., & Yang, JM. (2012). A study on the productivity review for management of performance using bibliometric methodology. Eleventh Wuhan International Conference on e-Business. Paper 4. Abstract retrieved on October 20, 2015, from http://aisel.aisnet.org/whiceb2011/4
Isaacson, W. (2008). Einstein: His life and universe. New York: Simon & Shuster.
Isaacson, W. (2014). Einstein: The life of a genius. London: Carlton Publishing.
Jones, R. A. (1997). The Boffin: A stereotype of scientists in post-war British films (1945–1970). Public Understanding of Science, 6, 3148.
Kadosh, R. C., Soski, S., Iuculano, T., Kanai, R., & Walsh, V. (2010). Modulating neuronal activity produces specific and long-lasting changes in numerical competence. Current Biology, 20, 20162020. Doi: 10.1016/j.cub.2010.10.007
Karmiloff-Smith, A. (1992). Beyond modularity: A developmental perspective on cognitive science. Cambridge: MIT Press.
Kaufman, J. C., & Baer, J. (2004). Hawking’s haiku, Madonna’s math: Why it is hard to be creative in every room of the house. In Sternberg, R. J., Grigorenko, E. L., & Singer, J. L. (Eds.), Creativity: From potential to realization. Washington, DC: APA Books.
Klahr, D. (2000). Exploring science: The cognition and development of discovery processes. Cambridge: MIT Press.
Klahr, D., & Simon, H. (1999). Studies of scientific discovery: Complementary approaches and convergent findings. Psychological Bulletin, 125, 524543.
Kokosh, J. (1969). MMPI personality characteristics of physical and social science students. Psychological Reports, 24, 883893.
Koyama, R., & Ikegaya, Y. (2015). Microglia in the pathogenesis of autism spectrum disorders. Neuroscience Research. Retrieved on October 23, 2015, from http://dx.doi.org/10.1016/j.neures.2015.06.005
Kumar, N. (Ed.). (2012). Gender and science: Studies across cultures. Delhi, India: Foundation Books.
Larkin, J., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics problems. Science, 208(4450), 13351342. DOI:10.1126/science.208.4450.1335z
Lawson, J., Baron-Cohen, S., & Wheelwright, S. (2004). Empathizing and systemizing in adults with and without Asperger Syndrome. Journal of Autism and Developmental Disorders, 34, 301310.
Le, H., Robbins, S. B., & Westrick, P. (2014). Predicting student enrollment and persistence in college STEM fields using an expanded PE fit framework: A large-scale multilevel study. Journal of Applied Psychology, 99(5), 915947.
Lehman, H. C. (1953). Age and achievement. Princeton, NJ: Princeton University Press.
Lehman, H. C. (1960). The age decrement in outstanding scientific creativity. American Psychologist, 15, 128134.
Lehman, H. C. (1966). The psychologist’s most creative years. American Psychologist, 21, 363369.
Levin, S. G., & Stephan, P. E. (1991). Research productivity over the life cycle: Evidence for academic scientists. The American Economic Review, 81, 114132.
Lippa, R. (1998). Gender-related individual differences and the structure of vocational interests: The importance of the people-things dimension. Journal of Personality and Social Psychology, 74, 9961009.
Lotka, A. J. (1926). The frequency distribution of scientific productivity. Journal of the Washington Academy of Sciences, 16(12), 317324.
Lounsbury, J. W., Foster, N., Patel, H., Carmody, P., Gibson, L. W., & Stairs, D. R. (2012). An investigation of the personality traits of scientists versus nonscientists and their relationship with career satisfaction. R&D Management, 42(1), 4759.
MacKinnon, D. W. (1970). Creativity: A multi-faceted phenomenon. In Roslanksy, J. (Ed.), Creativity (pp. 1932). Amsterdam: North-Holland Publishing.
Mahoney, M. J., & Kimper, T. P. (1976). From ethics to logic: A survey of scientists. In Mahoney, M. J. (Ed.), Science as subject: The psychological imperative (pp. 187193). Cambridge, MA: Ballinger.
Mayo, R., Alfasi, D., & Schwarz, N. (2014). Distrust and the positive test heuristic: Dispositional and situated social distrust improves performance on the Wason Rule Discovery Task. Journal of Experimental Psychology: General, 143(3), 985990. DOI:10.1037/a0035127
Merton, R. K. (1973). The sociology of science: Theoretical and empirical investigations. Chicago: Chicago University Press.
Miller, A. I. (1996). Insights of genius: Imagery and creativity in science and art. New York: Springer Verlag.
Mithen, S. (1996). The prehistory of the mind: The cognitive origins of art and science. London: Thames and Hudson.
Mount, M. K., Barrick, M. R., Scullen, S. M., & Rounds, J. (2005). Higher-order dimensions of the big five personality traits and the big six vocational interest types. Personnel Psychology, 58, 447478.
Murray, C. (2003). Human accomplishment: The pursuit of excellence in the arts and sciences, 800 B. C. to 1950. New York: HarperCollins.
National Research Council (2015). Enhancing the effectiveness of team science. Committee on the Science of Team Science. Cooke, N. J. & Hilton, M. L. (Eds.). Washington, DC: The National Academies Press.
National Science Foundation, National Center for Science and Engineering Statistics. (2015). Women, Minorities, and Persons with Disabilities in Science and Engineering: 2015. Special Report NSF 15–311. Arlington, VA. Retrieved on September 25, 2015 at www.nsf.gov/statistics/wmpd/.
Neffe, J., & Frische, S. (2007). Einstein: A biography. New York: Macmillan.
Nersessian, N. J. (1984). Faraday to Einstein: Constructing meaning in scientific theories. Dordrecht, Holland: Nijhoff.
Nersessian, N. J. (1986). How do scientists think? Capturing the dynamics of conceptual change in science. In Giere, R. N. (Ed.), Cognitive models of science (pp. 344). Minneapolis, MN: University of Minnesota Press.
Nersessian, N. J. (2008). Creating scientific concepts. Cambridge, MA: MIT Press.
Nersessian, N. J. (2009). How do engineering scientists think? Model‐based simulation in biomedical engineering research laboratories. Topics in Cognitive Science, 1(4), 730757. doi:10.1111/j.1756-8765.2009.01032.x
Nettle, D. (2006). Schizotypy and mental health amongst poets, visual artists, and mathematicians. Journal of Research in Personality, 40, 876890.
Novick, L. R. (1988). Analogical transfer, problem similarity, and expertise. Journal of Experimental Psychology: Learning, Memory & Cognition, 14, 510520.
Over, R. (1982). Is age a good predictor of research productivity? Australian Psychologist, 17, 129139.
Over, R. (1989). Age and scholarly impact. Psychology and Aging, 4, 222225.
Paletz, S. B. F., & Schunn, C. D. (2010). A social-cognitive framework of multidisciplinary team innovation. Topics in Cognitive Science, 2, 7395. DOI: 10.1111/j.1756-8765.2009.01029.x
Parker, S. T., and McKinney, M. L. (1999). Origins of intelligence. Baltimore, MD: Johns Hopkins University Press.
Pinker, S. (2002). The blank slate: The modern denial of human nature. New York: Viking.
Plucker, J. A., & Renzulli, J. S. (1999). Psychometric approaches to the study of human creativity. In Sternberg, R.J. (Ed.), Handbook of creativity (pp. 3561). Cambridge, England: Cambridge University Press.
Portes, A., & Rumbaut, R. G. (2001). Legacies: The story of the immigrant second generation. Berkeley, CA: University of California Press.
Proctor, E. J., & Capaldi, R. W. (Eds.), (2012). Psychology of science: Implicit and explicit processes. New York: Oxford University Press.
Prediger, D. J. (1982). Dimensions underlying Holland’s hexagon: Missing link between interests and occupations? Journal of Vocational Behavior, 21, 259287.
Price, D. (1963). Little science, big science. New York, NY: Columbia University Press
Rasoal, C., Danielsson, H., & Jungert, T. (2012). Empathy among students in engineering programmes. European Journal of Engineering Education, 37(5), 427435.
Rawlings, D., & Locarnini, A. (2008). Dimensional schizotypy, autism, and unusual word associations in artists and scientists. Journal of Research in Personality, 42, 465471.
Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental changes in mental arithemetic: Evidence for increased functional specialization in the left inferior parietal cortex. Cerebral Cortex, 15, 17791790. DOI: 10.1093/cercor/bhi055
Robertson, K. F., Smeets, S., Lubinski, D., & Benbow, C. P. (2010). Beyond the threshold hypothesis: Even among the gifted and top math/science graduate students, cognitive abilities, vocational interests and lifestyle preferences matter for career choice, performance and persistence. Current Directions in Psychological Science, 19, 346351. DOI: 10.1177/0963721410391442.
Robinson, J. E. (2008). Look me in the eye: My life with Asperger’s. New York: Three Rivers Press.
Roe, A. (1952). The making of a scientist. Westport, CT: Greenwood Press.
Roe, A. (1953). A psychological study of eminent psychologists and anthropologists, and a comparison with biological and physical scientists. Psychological Monographs: General and Applied, 67, 155.
Roe, A. (1965). Changes in scientific activities with age. Science, 150, 313318.
Roser, M. E., Fugelsang, J. A., Dunbar, K. N., Corballis, P. M., & Gazzaniga, M. S. (2005). Dissociating processes supporting causal perception and causal inference in the brain. Neuropsychology, 19, 591602. DOI: 10.1037/0894-4105.19.5.591.
Rubinstein, G. (2005). The big five among male and female students of different faculties. Personality and Individual Differences, 38(7), 14951503.
Runco, M. (2004). Everyone has creative potential. In Sternberg, R. J., Grigorenko, E. L., & Singer, J. L. (Eds.), Creativity: From potential to realization (pp. 2130). Washington, DC: APA Books.
Runyan, W. M. (2006). Psychobiography and the psychology of science: Understanding the relations between the live and work of individual psychologists. Review of General Psychology, 10, 147162.
Runyan, W. M. (2013). Psychobiography and the psychology of science: Encounters with psychology, philosophy, and statistics. In Feist, G. J. & Gorman, M. E., (Eds.), Handbook of the psychology of science (pp. 353379). New York, NY: Springer Publishing Co.
Science of Science and Innovation Policy. (n.d.). Retrieved on September 25, 2015 from www.nsf.gov/funding/pgm_summ.jsp?pims_id=501084.
Schuldberg, D. (2000). Six subclinical spectrum traits in normal creativity. Creativity Research Journal, 13(1), 516.
Schulze, A. D., & Seuffert, V. (2013). Conflicts, cooperation, and competition in the field of science and technology. In Feist, G. J. & Gorman, M. E. (Eds.), Handbook of the psychology of science (pp. 303330). New York, NY: Springer Publishing Co.
Schunn, C. D., & Trafton, J. G. (2013). The psychology of uncertainty in scientific data analysis. In Feist, G. J. & Gorman, M. E., (Eds.), Handbook of the psychology of science (pp. 461483). New York, NY: Springer Publishing Co.
Simonton, D. K. (1979). Multiple discovery and invention: Zeitgeist, genius, or chance? Journal of Personality and Social Psychology, 37, 16031616.
Simonton, D. K. (1986). Multiple discovery: Some Monte Carlo simulations and Gedanken experiments. Scientometrics, 9, 269280.
Simonton, D. K. (1988a). Age and outstanding achievement: What do we know after a century of research? Psychological Bulletin, 104, 251267.
Simonton, D. K. (1988b). Scientific genius: A psychology of science. Cambridge, England: Cambridge University Press.
Simonton, D. K. (1991). Career landmarks in science: Individual differences and interdisciplinary contrasts. Developmental Psychology, 27, 119130.
Simonton, D. K. (1999). Significant samples: The psychological study of eminent individuals. Psychological Methods, 4, 425451.
Simonton, D. K. (2000). Methodological and theoretical orientation and the long-term disciplinary impact of 54 eminent psychologists. Review of General Psychology, 4(1), 1324.
Simonton, D. K. (2008). Scientific talent, training, and performance: Intellect, personality, and genetic endowment. Review of General Psychology, 12, 2846. DOI: 10.1037/1089-2680.12.1.28.
Simonton, D. K. (2009). Varieties of (scientific) creativity: A hierarchical model of domain-specific disposition, development, and achievement. Perspectives on Psychological Science, 4, 441452.
Simonton, D. K. (2010). Creative thought as blind-variation and selective-retention: Combinatorial models of exceptional creativity. Physics of Life Reviews, 7, 156179. DOI: 10.1016/j.plrev.2010.02.002
Simonton, D. K. (2012). Foresight, insight, oversight, and hindsight in scientific discovery: How sighted were Galileo’s telescopic sightings? Psychology of Aesthetics, Creativity, and the Arts, 6(3), 243254. http://dx.doi.org/10.1037/a0027058.
Simonton, D. K. (2013). Creative thoughts as acts of free will: A two-stage formal integration. Review of General Psychology, 17(4), 374.
Soler, J. M. (2007). A rational indicator of scientific creativity. Journal of Infometrics, 1, 123130. doi:10.1016/j.joi.2006.10.004
Spelke, E. S. (2005). Sex differences in intrinsic aptitude for mathematics and science? A critical review. American Psychologist, 60, 950958.
Sternberg, R. J. (1988). A three-facet model of creativity. In Sternberg, R. J. (Ed.), The nature of creativity (pp. 125147). Cambridge, England: Cambridge University Press.
Strand, S., Deary, I. J., & Smith, P. (2006). Sex differences in cognitive abilities test scores: A UK national picture. British Journal of Educational Psychology, 76, 463480.
Stroebe, W. (2010). The graying of academia: Will it reduce scientific productivity? American Psychologist, 65, 660673. DOI: 10.1037/a0021086
Subotnik, R. F., & Steiner, C. L. (1994). Adult manifestations of adolescent talent in science: A longitudinal study of 1983 Westinghouse Science Talent Search winners. In Subotnik, R. & Arnold, K. D. (Eds.), Beyond Terman: Contemporary longitudinal studies of giftedness and talent. Creativity research (pp. 5276). Norwood, NJ: Ablex Publishing Corp.
Subotnik, R. F., Duschl, R. A., & Selmon, E. H. (1993). Retention and attrition of science talent: A longitudinal study of Westinghouse Science Talent Search winners. International Journal of Science Education, 15, 6172.
Sulloway, F. (1995). Born to Rebel: Birth order, family dynamics and creative lives. New York: Pantheon Books.
Tang, G., Gudsnuk, K., Kuo, S-H., Cotrina, M. L., Rosoklija, G. Sosunov, A., & Sulzer, D. (2014). Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron, 83, 11311143. DOI: 10.1016/j.neuron.2014.07.040.
Terman, L. M. (1954). Scientists and nonscientists in a group of 800 gifted men. Psychological Monographs: General and Applied, 68(7), 144. DOI:10.1037/h0093672.
Thomson, N. D., Wurtzburg, S. J., & Centifanti, L. C. M. (2015). Empathy or science? Empathy explains physical science enrollment for men and women. Learning and Individual Differences, 40, 115120. http://dx.doi.org/10.1016/j.lindif.2015.04.003
Treffert, D. A. (2006). Extraordinary people: Understanding savant syndrome (updated version). Lincoln, NE: iUniverse.
Tweney, R. D. (1989). A framework for the cognitive psychology of science. In Gholson, B., Shadish, W. R. Jr., Neimeyer, R. A., & Houts, A. C. (Eds.), Psychology of science: Contributions to metascience (pp. 342366). Cambridge, MA: Cambridge University Press.
Tweney, R. D. (1991). Faraday’s notebooks: The active organization of creative science. Physics Education, 26, 301306.
Tweney, R. D. (1998). Toward a cognitive psychology of science: Recent research and its implications. Current Directions in Psychological Science, 7, 150154.
Tweney, R. D. (2013). Cognitive-historical approaches to the understanding of science. In Feist, G. J. & Gorman, M. E. (Eds.), Handbook of the psychology of science (pp. 7193). New York, NY: Springer Publishing.
Tweney, R. D. & Hoffner, C. E. (1987). Understanding the microstructure of science: An example. In Program of the ninth annual conference of the cognitive science society (pp. 677681). Hillsdale, NJ: Lawrence Erlbaum.
Tweney, R. D., Doherty, M. E., & Mynatt, C. R. (Eds.), (1981). On scientific thinking. New York: Columbia University Press.
Vartanian, O., Bristol, A. S., & Kaufman, J. C. (Eds.), (2013). Neuroscience of creativity. Cambridge, MA: MIT Press.
Wai, J., Lubinski, D., & Benbow, C. P. (2005). Creativity and occupational accomplishments among intellectually precocious youths: An age 13 to Age 33 longitudinal study. Journal of Educational Psychology, 97, 484492.
Wai, J., Lubinski, D., & Benbow, C. P. (2009). Spatial ability for STEM domains: Aligning over 50 years of cumulative psychological knowledge solidifies its importance. Journal of Educational Psychology, 101, 817835.
Wai, J., Cacchio, M., Putallaz, M., & Makel, M. C. (2010). Sex differences in the right tail of cognitive abilities: A 30-year examination. Intelligence, 38, 412423. DOI: 10.1016/j.intell.2010.04.006
Wason, P. C. (1966). Reasoning. In Foss, B. (Ed.), New horizons in psychology: I. (pp. 135151). Baltimore, MD: Penguin.
Webb, R. M., Lubinski, D., & Benbow, C. P. (2002). Mathematically facile adolescents with math-science aspirations: New perspectives on their educational and vocational development. Journal of Educational Psychology, 94, 785794.
Wilson, G. D., & Jackson, C. (1994). The personality of physicists. Personality and Individual Differences, 16, 187189.
Zuckerman, H. (1996). Scientific elite (2nd edn.). New York: Free Press.

References

Alberts, B., Kirschner, M. W., Tilghman, S., & Varmus, H. (2014). Rescuing US biomedical research from its systemic flaws. Proceedings of the National Academy of Sciences, 111(16), 57735777.
Amabile, T. M. (1996). Creativity in context. Boulder, CO: Westview Press.
Amabile, T. M. (1998). How to kill creativity. Boston, MA.: Harvard Business School Publishing.
Bachtold, L. M., & Werner, E. E. (1972). Personality characteristics of women scientists. Psychological Reports, 31, 391396.
Baron-Cohen, S., Bolton, P., Wheelwright, S., Scahill, V., Short, L., Mead, G., & Smith, A. (1998). Autism occurs more often in families of physicists, engineers, and mathematicians. Autism, 2(3), 296301.
Baron-Cohen, S., Wheelwright, S., Skinner, R., Martin, J., & Clubley, E. (2001). The autism-spectrum quotient (AQ): Evidence from asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. Journal of Autism and Developmental Disorders, 31(1), 517.
Bass, T. A. (1994). Reinventing the future: Conversations with the world’s leading scientists. Reading, MA: Addison Wesley Publishing Company.
Baunach, D. M., & Burgess, E. O. (2013). HIV/AIDS prejudice in the American deep south. Sociological Spectrum, 33(2), 175195.
Bittner, J. V., & Heidemeier, H. (2013). Competitive mindsets, creativity, and the role of regulatory focus. Thinking Skills and Creativity, 9, 5968.
Boon, M. (1996). Naming the enemy: AIDS research, contagion, and the discovery of HIV. 4. Retrieved on from http://cultronix.eserver.org/boon/
Busse, T. V., & Mansfield, R. S. (1984). Selected personality traits and achievement in male scientists. The Journal of Psychology, 116, 117131.
Carnevale, P. J., & Probst, T. M. (1998). Social values and social conflict in creative problem solving and categorization. Journal of Personality and Social Psychology, 41, 210219.
Cattell, R. B., & Drevdahl, J. E. (1955). A comparison of the personality profile (16PF) of eminent researchers with that of eminent teachers and administrators, and of the general population. British Journal of Psychology, 46, 248261.
Cattell, R. B., Eber, H. W., & Tatsuoka, M. M. (1970). Handbook for the 16 Personality Factor Questionaire (16PF) in Clinical Educational Industrial and Research Psychology. Savoy, IL: Institute for Personality, Ability Testing.
Celi, L. A., Ippolito, A., Montgomery, R. A., Moses, C., & Stone, D. J. (2014). Crowdsourcing knowledge discovery and innovations in medicine. Journal of Medical Internet Research, 16(9), e216.
Chambers, J. A. (1964). Relating personality and biographical factors to scientific creativity. Psychological Monographs: General and Applied, 78(7, whole no. 584).
Collier, R. (2014). A blueprint for medical research stardom. Canadian Medical Association. Journal, 186(11), 821.
Collins, F. S. (2011). Reengineering translational science: The time is right. Science Translational Medicine, 3(90), 90cm17–90cm17.
Comte, A. (1855). The positive philosophy of Auguste Comte (Trans. Martineau, H.). New York: Blanchard.
Csikszentmihalyi, M., & Nakamura, J. (2014). Catalytic Creativity: The case of Linus Pauling The systems model of creativity (pp. 185194): Netherlands: Springer.
Drolet, B. C., & Lorenzi, N. M. (2011). Translational research: Understanding the continuum from bench to bedside. Translational Research, 157(1), 15.
Erat, S., & Gneezy, U. (2016). Incentives for creativity. Experimental Economics, 19(2), 269280. DOI:10.1007/s10683-015-9440-5
Fan, H. Y., Conner, R. F., & Villarreal, L. P. (2007). AIDS: Science and society. Sudbury, MA: Jones and Bartlett Publishers.
Fang, F. C., & Casadevall, A. (2015). Competitive science: Is competition ruining science? Infection and Immunity, 83(4), 12291233. DOI:10.1128/iai.02939-14
Feist, G. J. (1993). A structural model of scientific eminence. Psychological Science, 4, 366371.
Feist, G. J. (1998). A meta-analysis of the impact of personality on scientific and artistic creativity. Personality and Social Psychological Review, 2, 290309.
Feist, G. J. (2006). How development and personality influence scientific thought, interest, and achievement. Review of General Psychology, 10(2), 163.
Feist, G. J., & Barron, F. X. (2003). Predicting creativity from early to late adulthood: Intellect, potential, and personality. Journal of Research in Personality, 37(2), 6288.
Fishbein, D. H., Ridenour, T. A., Stahl, M., & Sussman, S. (2016). The full translational spectrum of prevention science: facilitating the transfer of knowledge to practices and policies that prevent behavioral health problems. Translational Behavioral Medicine, 6(1), 516.
Fudge, N., Sadler, E., Fisher, H. R., Maher, J., Wolfe, C. D., & McKevitt, C. (2016). Optimising translational research opportunities: A systematic review and narrative synthesis of basic and clinician scientists’ perspectives of factors which enable or hinder translational research. Plos One, 11(8), e0160475.
Gallo, R. C. (2002). The early years of HIV/AIDS. Science, 298(5599), 17281730.
Gallo, R. C., & Montagnier, L. (2003). The discovery of HIV as the cause of AIDS. New England Journal of Medicine, 349(24), 22832285.
Garcia, J., Colson, P. W., Parker, C., & Hirsch, J. S. (2015). Passing the baton: Community-based ethnography to design a randomized clinical trial on the effectiveness of oral pre-exposure prophylaxis for HIV prevention among black men who have sex with men. Contemporary Clinical Trials, 45, 244251.
Garwood, D. S. (1964). Personality factors related to creativity in young scientists. Journal of Abnormal and Social Psychology, 68(413–419).
Gitschier, J. (2012). It was heaven: An interview with Evelyn Witkin. PLOS Genetics, 8(10), 16.
Goldsworthy, P., & McFarlane, A. C. (2002). Howard Florey, Alexander Fleming and the fairy tale of penicillin. Medical Journal of Australia, 176(4), 178180.
Gough, H. G. (1961). A personality sketch of the creative research scientist. Paper presented at the 5th Annual Conference on Personnel and Industrial Relations Research, UCLA, Los Angeles, CA.
Graziano, W. G., Jensen-Campbell, L. A., & Hair, E. C. (1996). Perceiving interpersonal conflict and reacting to it: the case for agreeableness. Journal of Personality and Social Psychology, 70(4), 820.
Helmreich, R. L., Spence, J. T., Beane, W. E., Lucker, G. W., & Matthews, K. A. (1980). Making it in academic psychology: Demographic and personality correlates of attainment. Journal of Personality and Social Psychology, 39(5), 896908.
Helms, C. B., Turan, J. M., Atkins, G., Kempf, M.-C., Clay, O. J., Raper, J. L., & Turan, B. (2016). Interpersonal mechanisms contributing to the association between hiv-related internalized stigma and medication adherence. AIDS and Behavior, 110.
Helson, R. (1971). Women mathematicians and the creative personality. Journal of Consulting and Clinical Psychology, 36, 210220.
Helson, R., & Crutchfield, R. (1970). Mathematicians: The creative researcher and the average PhD. Journal of Consulting and Clinical Psychology, 34, 250257.
Heyward, W. L., & Curran, J. W. (1988). The epidemiology of AIDS in the U.S. Scientific American, 7281.
Holland, J. L. (1992). Making vocational choices, 2nd ed. Odessa, FL: Psychologica Assessment Resources.
Hollingsworth, J. R. (2002). Research organizations and major discoveries in twentieth-century science: A case study of excellence in biomedical research. WZB.
Hollingsworth, J. R., & Hollingsworth, E. J. (2000). Major discoveries and biomedical research organizations: perspectives on interdisciplinarity, nurturing leadership, and integrated structure and cultures. Practising Interdisciplinarity, 215244.
Hsu, J. (2010). History: ‘Lost’ letters reveal twists in discovery of double helix. livescience.
Ioannidis, J. P. (2015). Is it possible to recognize a major scientific discovery? JAMA, 314(11), 11351137.
Isaacson, W. (1983). Hunting for the hidden killers: AIDS. Time, 5055.
Jensen-Campbell, L. A., & Graziano, W. G. (2001). Agreeableness as a moderator of interpersonal conflict. Journal of Personality, 69(2), 323362.
Kippax, S. C., Holt, M., & Friedman, S. R. (2011). Bridging the social and the biomedical: engaging the social and political sciences in HIV research. Journal of the International AIDS Society, 14(Supp. 2), S1.
Kramer, L. (2003). 1,112 and counting. In Bull, C. (Ed.), While the world sleeps: Writings from the first twenty years of the global AIDS plague (pp. 720). New York, NY: Thunder’s Mouth Press.
Ludwig, A. M. (1992). Creative achievement and psychopathology: Comparison across professions. American Journal of Psychopathology, 46(330–356).
Ludwig, A. M. (1995). The price of greatness: Resolving the creativity and madness controversy. New York, NY: Guilford Press.
Ludwig, A. M. (1998). Method and madness in the arts and sciences. Creativity Research Journal, 11, 93101.
MacQueen, K. (2011). Framing the social in biomedical HIV prevention trials: A 20-year retrospective. Journal of the International AIDS Society, 14 (Supp. 2), S3.
Maulsby, C., Millett, G., Lindsey, K., Kelley, R., Johnson, K., Montoya, D., & Holtgrave, D. (2013). HIV among black men who have sex with men (MSM) in the United States: A review of the literature. AIDS and Behavior, 18(1), 1025.
Mayer, K. H., Wang, L., Koblin, B., Mannheimer, S., Magnus, M., Del Rio, C., & Watson, C. C. (2014). Concomitant socioeconomic, behavioral, and biological factors associated with the disproportionate HIV infection burden among Black men who have sex with men in 6 US cities. PloS One, 9(1), e87298.
McAllister, L. (1996). CPI interpretation, 3rd ed. Palo Alto, CA: Consulting Psychologists Press, Inc.
McCrae, R. R., & John, O. P. (1992). An introduction to the five-factor model and its applications. Journal of Personality, 60(2), 175215.
McDowell, G. S., Gunsalus, K. T., MacKellar, D. C., Mazzilli, S. A., Pai, V. P., Goodwin, P. R., & Kraemer, J. (2014). Shaping the Future of Research: a perspective from junior scientists. F1000Research, 3.
Meyer, A. N., Longhurst, C. A., & Singh, H. (2016). Crowdsourcing diagnosis for patients with undiagnosed illnesses: an evaluation of CrowdMed. Journal of Medical Internet Research, 18(1).
Millett, G. A., Flores, S. A., Peterson, J. L., & Bakeman, R. (2007). Explaining disparities in HIV infection among black and white men who have sex with men: A meta-analysis of HIV risk behaviors. AIDS, 21(15), 20832091.
Montagnier, L. (2002). A history of HIV discovery. Science, 298(5599), 17271728.
Morgan, M., Barry, C. A., Donovan, J. L., Sandall, J., Wolfe, C. D., & Boaz, A. (2011). Implementing ‘translational’ biomedical research: Convergence and divergence among clinical and basic scientists. Social Science & Medicine, 73(7), 945952.
Morton, C. C. (2014). Innovating openly: Researchers and patients turn to crowdsourcing to collaborate on clinical trials, drug discovery, and more. IEEE Pulse, 6367.
Murray, H. A. (1973). Thematic apperception test. San Antonio, TX: Pearson Education.
NIH. (2011). NIH announces 79 awards to encourage creative ideas in science. Retrieved on from https://www.nih.gov/news-events/news-releases/nih-announces-79-awards-encourage-creative-ideas-science
Nobel Media AB. (2014). The Nobel Assembly at Karolinska Institutet – Nobel Prize awarder for the Nobel Prize in Physiology or Medicine. Retrieved on from http://www.nobelprize.org/nobel_prizes/medicine/prize_awarder/
Park, A. (2014). The man who co-discovered HIV 30 years ago on why there won’t be a cure for AIDS. Time.
Park, G., Lubinski, D., & Benbow, C. P. (2007). Contrasting intellectual patterns predict creativity in the arts and in the sciences: Tracking intellectually precocious youth over 25 years. Psychological Science, 18, 948952.
Philipson, L. (2005). Medical research activities, funding, and creativity in Europe. Journal of the American Medical Association, 294(11), 13941398.
Piffer, D. (2012). Can creativity be measured? An attempt to clarify the notion of creativity and general directions for future research. Thinking Skills and Creativity, 7, 258264.
Pomeroy, C. (2015). THe lasker awards at 70. JAMA, 314(11), 11171118. DOI:10.1001/jama.2015.10116.
Post, F. (1994). Creativity and psychopathology: A stud of 291 world famous men. British Journal of Psychiatry, 165, 2234.
Prediger, D. J. (1982). Dimensions underlying Holland’s hexagon: Missing link between interest and occupations? Journal of Vocational Behavior, 21, 259287.
Raskin, E. A. (1936). Comparison of scientific and literary ability: A biographical study of eminent scientists and men of letters of the nineteenth century. Journal of Abnormal and Social Psychology, 168, 2035.
Reif, S. S., Whetten, K., Wilson, E. R., McAllaster, C., Pence, B. W., Legrand, S., & Gong, W. (2014). HIV/AIDS in the Southern USA: A disproportionate epidemic. AIDS Care, 26(3), 351359.
Remnick, D. (1987, August 9, 1987). Robert Gallo goes to war. Washington Post.
Roe, A. (1953). The making of a scientist. New York, NY: Dodd, Mead.
Segal, S. M., Busse, T. V., & Mansfield, R. S. (1980). The relationship of scientific creativity in the biological sciences to predoctoral accomplishments and experiences. American Educational Research Association, 17(4), 491502.
Simonton, D. K. (2002). Great psychologists and their times: Scientific insights into psychology’s history. Washington, D. C.: APA Books.
Simonton, D. K. (2003). Scientific creativity as constrained stochastic behavior: The integration of product, person, and process perspectives. Psychological Bulletin, 129(4), 475494. DOI:10.1037/0033-2909.129.4.475.
Simonton, D. K. (2004). Creativity in science: Chance, logic, genius, and zeitgeist. New York, NY: Cambridge University Press.
Simonton, D. K. (2009). Varieties of (scientific) creativity: a hierarchical model of domain-specific disposition, development, and achievement. Perspectives on Psychological Science, 4(5), 441452.
Simonton, D. K. (2013). Scientific genius is extinct. Nature, 493, 602.
Tsai, A. C. (2015). Socioeconomic gradients in internalized stigma among 4,314 persons with HIV in sub-Saharan Africa. AIDS and Behavior, 19(2), 270282. DOI:10.1007/s10461-014-0993-7.
Turan, B., Smith, W., Cohen, M. H., Wilson, T. E., & Adimora, A. A. (2016). Depression and social isolation mediate effect of hiv stigma on women’s art adherence. Age (years), 49, 8.59.
van Griensven, F., & Stall, R. D. (2014). Racial disparity in HIV incidence in MSM in the United States: How can it be reduced? AIDS, 28(1), 129130.
van Zelst, R. H., & Kerr, W. A. (1954). Personality self-assessment of scientific and technical personnel. Journal of Applied Psychology, 38, 145147.
Varmus, H. (2009). The art and politics of science. New York, NY: W. W. Norton & Company.
Villarosa, L. (2017). America’s hidden H.I.V. epidemic. The New York Times Magazine, 3849.
Wainwright, S. P., Williams, C., Michael, M., Farsides, B., & Cribb, A. (2006). From bench to bedside? Biomedical scientists’ expectations of stem cell science as a future therapy for diabetes. Social Science & Medicine, 63(8), 20522064.
Witkin, E. M. (1976). Ultraviolet mutagenesis and inducible DNA repair in Escherischia coli. Bacteriological Reviews, 40(4), 869907.
Woolf, S. H. (2008). The meaning of translational research and why it matters. JAMA, 299(2), 211213.
Zerhouni, E. A. (2003). The NIH roadmap. Science, 302(5642), 6372.
Zerhouni, E. A. (2005). US biomedical research: basic, translational, and clinical sciences. JAMA, 294(11), 13521358.

References

Annin, E. L., Boring, E. G., & Watson, R. I. (1968). Important psychologists, 1600–1967. Journal of the History of the Behavioral Sciences, 4, 303315.
Bachtold, L. M., & Werner, E. E. (1970). Personality profiles of gifted women: Psychologists. American Psychologist, 25, 234243.
Boring, M. D., & Boring, E. G. (1948). Masters and pupils among the American psychologists. American Journal of Psychology, 61, 527534.
Bridgwater, C. A., Walsh, J. A., & Walkenbach, J. (1982). Pretenure and posttenure productivity trends of academic psychologists. American Psychologist, 37, 236238.
Campbell, D. P. (1965). The vocational interests of American Psychological Association presidents. American Psychologist, 20, 636644.
Cattell, R. B. (1963). The personality and motivation of the researcher from measurements of contemporaries and from biography. In Taylor, C. W. & Barron, F. (Eds.), Scientific creativity: Its recognition and development (pp. 119131). New York: Wiley.
Cattell, R. B., & Drevdahl, J. E. (1955). A comparison of the personality profile (16 P. F.) of eminent researchers with that of eminent teachers and administrators, and of the general population. British Journal of Psychology, 46, 248261.
Chambers, J. A. (1964). Relating personality and biographical factors to scientific creativity. Psychological Monographs: General and Applied, 78 (7, whole no. 584).
Christensen, H., & Jacomb, P. A. (1992). The lifetime productivity of eminent Australian academics. International Journal of Geriatric Psychiatry, 7, 681686.
Clark, K. E. (1954). The APA study of psychologists. American Psychologist, 9, 117120.
Coan, R. W. (1968). Dimensions of psychological theory. American Psychologist, 23, 715722.
Coan, R. W. (1973). Toward a psychological interpretation of psychology. Journal of the History of the Behavioral Sciences, 9, 313327.
Coan, R. W. (1979). Psychologists: Personal and theoretical pathways. New York: Irvington Publishers.
Coan, R. W., & Zagona, S. V. (1962). Contemporary ratings of psychological theorists. Psychological Record, 12, 315322.
Cole, S. (1979). Age and scientific performance. American Journal of Sociology, 84, 958977.
Cole, S. (1983). The hierarchy of the sciences? American Journal of Sociology, 89, 111139.
Conway, J. B. (1988). Differences among clinical psychologists: Scientists, practitioners, and scientist-practitioners. Professional Psychology: Research and Practice, 19, 642655.
Cronbach, L. J. (1957). The two disciplines of scientific psychology. American Psychologist, 12, 671684.
Davis, S. F., Thomas, R. L., & Weaver, M. S. (1982). Psychology’s contemporary and all-time notables: Student, faculty, and chairperson viewpoints. Bulletin of the Psychonomic Society, 20, 36.
Dennis, W. (1954). Productivity among American psychologists. American Psychologist, 9, 191194.
Dennis, W., & Girden, E. (1954). Current scientific activities of psychologists as a function of age. Journal of Gerontology, 9, 175178.
Diener, E., Oishi, S., & Park, J. (2014). An incomplete list of eminent psychologists of the modern era. Archives of Scientific Psychology, 2, 2032.
Fanelli, D. (2010). “Positive” results increase down the hierarchy of the sciences. PLoS ONE 5(4): e10068. DOI:10.1371/journal.pone.0010068.
Fanelli, D., & Glänzel, W. (2013). Bibliometric evidence for a hierarchy of the sciences. PLoS ONE, 8(6): e66938. DOI:10.1371/journal.pone.0066938
Grosul, M., & Feist, G. J. (2014). The creative person in science. Psychology of Aesthetics, Creativity, and the Arts, 8, 3043.
Guyter, L., & Fidell, L. (1973). Publications of men and women psychologists. American Psychologist, 28, 157160.
Haggbloom, S. J., Warnick, R., Warnick, J. E., Jones, V. K., Yarbrough, G. L., Russell, T. M., & Monte, E. (2002). The 100 most eminent psychologists of the 20th Century. Review of General Psychology, 6, 139152.
Helmreich, R. L., Spence, J. T., Beane, W. E., Lucker, G. W., & Matthews, K. A. (1980). Making it in academic psychology: Demographic and personality correlates of attainment. Journal of Personality and Social Psychology, 39, 896908.
Helmreich, R. L., Spence, J. T., & Pred, R. S. (1988). Making it without losing it: Type A, achievement motivation, and scientific attainment revisited. Personality and Social Psychology Bulletin, 14, 495504.
Helmreich, R. L., Spence, J. T., & Thorbecke, W. L. (1981). On the stability of productivity and recognition. Personality and Social Psychology Bulletin, 7, 516522.
Heyduk, R. G., & Fenigstein, A. (1984). Influential works and authors in psychology: A survey of eminent psychologists. American Psychologist, 39, 556559.
Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National Academy of Sciences, 102, 1656916572.
Horner, K. L., Rushton, J. P., & Vernon, P. A. (1986). Relation between aging and research productivity of academic psychologists. Psychology and Aging, 1, 319324.
Johnson, J. A., Germer, C. K., Efran, J. S., & Overton, W. F. (1988). Personality as the basis for theoretical predilections. Journal of Personality and Social Psychology, 55, 824835.
Kaufman, J. C., & Beghetto, R. A. (2009). Beyond big and little: The four c model of creativity. Review of General Psychology, 13, 113.
Kimble, G. A. (1984). Psychology’s two cultures. American Psychologist, 39, 833839.
Kinnier, R. T., Metha, A. T., Buki, L. P., & Rawa, P. M. (1994). Manifest value of eminent psychologists: A content analysis of their obituaries. Current Psychology: Developmental, Learning, Personality, Social, 13, 8894.
Kuncel, N. R., Hezlett, S. A., & Ones, D. S. (2004). Academic performance, career potential, creativity, and job performance: Can one construct predict them all? Journal of Personality & Social Psychology, 86, 148161.
Lee, J. D., Vicente, K. J., Cassano, A., & Shearer, A. (2003). Can scientific impact be judged prospectively? A bibliometric test of Simonton’s model of creative productivity. Scientometrics, 56, 223232.
Lehman, H. C. (1966). The psychologist’s most creative years. American Psychologist, 21, 363369.
Ludwig, A. M. (1998). Method and madness in the arts and sciences. Creativity Research Journal, 11, 93101.
Lyons, J. (1968). Chronological age, professional age, and eminence in psychology. American Psychologist, 23, 371374.
Matthews, K. A., Helmreich, R. L., Beane, W. E., & Lucker, G. W. (1980). Pattern A, achievement striving, and scientific merit: Does Pattern A help or hinder? Journal of Personality and Social Psychology, 39, 962967.
Myers, C. R. (1970). Journal citations and scientific eminence in contemporary psychology. American Psychologist, 25, 10411048.
Overskeid, G., Grønnerød, C., & Simonton, D. K. (2012). The personality of a nonperson: Gauging the inner Skinner. Perspectives on Psychological Science, 7, 187197.
Over, R. (1981). Affiliations of psychologists elected to the National Academy of Sciences. American Psychologist, 36, 744752.
Over, R. (1982a). The durability of scientific reputation. Journal of the History of the Behavioral Sciences, 18, 5361.
Over, R. (1982b). Research productivity and impact of male and female psychologists. American Psychologist, 37, 2431.
Platz, A. (1965). Psychology of the scientist: XI. Lotka’s law and research visibility. Psychological Reports, 16, 566568.
Platz, A., & Blakelock, E. (1960). Productivity of American psychologists: Quantity versus quality. American Psychologist, 15, 310312.
Roe, A. (1953). The making of a scientist. New York: Dodd, Mead.
Rodgers, R. C., & Maranto, C. L. (1989). Causal models of publishing productivity in psychology. Journal of Applied Psychology, 74, 636649.
Ruscio, J., Seaman, F., D’Oriano, C., Stremlo, E., & Mahalchik, K. (2012). Measuring scholarly impact using modern citation-based indices. Measurement: Interdisciplinary Research and Perspectives, 10, 123146.
Rushton, J. P. (1984). Evaluating research eminence in psychology: The construct validity of citation counts. Bulletin of the British Psychological Society, 37, 3336.
Rushton, J. P. (1990). Creativity, intelligence, and psychoticism. Personality and Individual Differences, 11, 12911298.
Shadish, W. R. Jr. (1989). The perception and evaluation of quality in science. In Gholson, B., Shadish, W. R. Jr., Neimeyer, R. A., & Houts, A. C. (Eds.), The psychology of science: Contributions to metascience (pp. 383426). Cambridge: Cambridge University Press.
Simon, H. A. (1954). Productivity among American psychologists: An explanation. American Psychologist, 9, 804805.
Simonton, D. K. (1992). Leaders of American psychology, 1879–1967: Career development, creative output, and professional achievement. Journal of Personality and Social Psychology, 62, 517.
Simonton, D. K. (2000). Methodological and theoretical orientation and the long-term disciplinary impact of 54 eminent psychologists. Review of General Psychology, 4, 1324.
Simonton, D. K. (2002). Great psychologists and their times: Scientific insights into psychology’s history. Washington, DC: APA Books.
Simonton, D. K. (2004). Psychology’s status as a scientific discipline: Its empirical placement within an implicit hierarchy of the sciences. Review of General Psychology, 8, 5967.
Simonton, D. K. (2005). Creativity in psychology: On becoming and being a great psychologist. In Kaufman, J. C. & Baer, J. (Eds.), Faces of the muse: How people think, work, and act creatively in diverse domains (pp. 139151). Mahwah, NJ: Erlbaum.
Simonton, D. K. (2008). Gender differences in birth order and family size among 186 eminent psychologists. Journal of Psychology of Science and Technology, 1, 1522.
Simonton, D. K. (2009). Varieties of (scientific) creativity: A hierarchical model of disposition, development, and achievement. Perspectives on Psychological Science, 4, 441452.
Simonton, D. K. (2013). What is a creative idea? Little-c versus Big-C creativity. In Chan, J. & Thomas, K. (Eds.), Handbook of research on creativity (pp. 6983). Cheltenham Glos, UK: Edward Elgar.
Simonton, D. K. (2014a). Hierarchies of creative domains: Disciplinary constraints on blind-variation and selective-retention. In Paul, E. S. & Kaufman, S. B. (Eds.), The philosophy of creativity: New essays (pp. 247261). New York: Oxford University Press.
Simonton, D. K. (2014b). More method in the mad-genius controversy: A historiometric study of 204 historic creators. Psychology of Aesthetics, Creativity, and the Arts, 8, 5361.
Simonton, D. K. (2015). Psychology as a science within Comte’s hypothesized hierarchy: Empirical investigations and conceptual implications. Review of General Psychology, 9, 334344.
Simonton, D. K. (2017). Eminent female psychologists in family context: Historical trends for 80 women born 1847–1950. Journal of Genius and Eminence, 1(2), 1525.
Song, A. V., & Simonton, D. K. (2007). Personality assessment at a distance: Quantitative methods. In Robins, R. W., Fraley, R. C., & Krueger, R. F. (Eds.), Handbook of research methods in personality psychology (pp. 308321). New York: Guilford Press.
Stevens, G., & Gardner, S. (1985). Psychology of the scientist: LIV. Permission to excel: A preliminary report of influences on eminent women psychologists. Psychological Reports, 57, 10231026.
Suedfeld, P. (1985). APA presidential addresses: The relation of integrative complexity to historical, professional, and personal factors. Journal of Personality and Social Psychology, 47, 848852.
Taylor, M. S., Locke, E. A., Lee, C., & Gist, M. E. (1984). Type A behavior and faculty research productivity: What are the mechanisms? Organizational Behavior and Human Performance, 34, 402418.
Tracy, J. L., Robins, R. W., & Sherman, J. W. (2009). The practice of psychological science: Searching for Cronbach’s two streams in social-personality psychology. Journal of Personality and Social Psychology, 96, 12061225.
Terry, W. S. (1989). Birth order and prominence in the history of psychology. Psychological Record, 39, 333337.
Vance, F. L., & MacPhail, S. L. (1964). APA membership trends and fields of specialization of psychologists earning doctoral degrees between 1959 and 1962. American Psychologist, 9, 654658.
White, K. G., & White, M. J. (1978). On the relation between productivity and impact. Australian Psychologist, 13, 369374.
Wispé, L. G. (1963, September 27). Traits of eminent American psychologists. Science, 141, 12561261.
Wispé, L. G. (1965). Some social and psychological correlates of eminence in psychology. Journal of the History of the Behavioral Sciences, 7, 8898.
Wispé, L. G., & Parloff, M. B. (1965). Impact of psychotherapy on the productivity of psychologists. Journal of Abnormal Psychology, 70, 188193.
Wispé, L. G., & Ritter, J. H. (1964). Where America’s recognized psychologists received their doctorates. American Psychologist, 19, 634644.
Wray, K. B. (2010). Rethinking the size of scientific specialties: Correcting Price’s estimate. Scientometrics, 83, 471476.
Zachar, P., & Leong, F. T. L. (1992). A problem of personality: Scientist and practitioner differences in psychology. Journal of Personality, 60, 665677.
Zusne, L. (1976). Age and achievement in psychology: The harmonic mean as a model. American Psychologist, 31, 805807.
Zusne, L. (1985). Contributions to the history of psychology: XXXVIII. The hyperbolic structure of eminence. Psychological Reports, 57, 12131214.
Zusne, L. (1987). Contributions to the history of psychology: XLIV. Coverage of contributors in histories of psychology. Psychological Reports, 61, 343350.
Zusne, L., & Dailey, D. P. (1982). History of psychology texts as measuring instruments of eminence in psychology. Revista de Historia de la Psicología, 3, 742.

References

Agogué, M., Le Masson, P., Dalmasso, C., Houdé, O., & Cassotti, M. (2015). Resisting classical solutions: The creative mind of industrial designers and engineers. Psychology of Aesthetics, Creativity, and the Arts, 9(3), 313318.
Amabile, T. M. (1982). Social psychology of creativity: A consensual assessment technique. Journal of Personality and Social Psychology, 43, 9971013.
Amabile, T. M., & Tighe, E. (1993). Questions of creativity. In Brockman, J. (Ed.), Creativity. The Reality Club (Vol. 4, pp. 727). New York: Simon and Schuster.
Badran, I. (2007). Enhancing creativity and innovation in engineering education. European Journal of Engineering Education, 32(5), 573585.
Baer, J. M. (2010). Is creativity domain specific? In Kaufman, J. C. & Sternberg, R. J. (Eds.), The Cambridge handbook of creativity (pp. 321341). New York: Cambridge University Press.
Berger, K., Surovek, A., Jensen, D., & Cropley, D. (2014). Individual creativity and team engineering design: A taxonomy for team composition. Paper presented at the Proceedings of the Frontiers in Education Conference, Madrid, Spain.
Besemer, S. P., & O’Quin, K. (1987). Creative product analysis: Testing a model by developing a judging instrument. In Isaksen, S. G. (Ed.), Frontiers of creativity research: Beyond the basics (pp. 367389). Buffalo: Brady.
Blanchard, B. S., & Fabrycky, W. J. (2006). Systems engineering and analysis (4th ed.). Upper Saddle River, NJ: Pearson Prentice Hall.
Buhl, H. R. (1960). Creative engineering design. Iowa State University Press.
Cattell, R. B., & Butcher, H. J. (1968). The prediction of achievement and creativity. New York: Bobbs-Merrill.
Charyton, C., Jagacinski, R. J., & Merrill, J. A. (2008). CEDA: A research instrument for creative engineering design assessment. Psychology of Aesthetics, Creativity, and the Arts, 2(3), 147154.
Costa, P. T. Jr, & McCrae, R. R. (1992). Four ways five factors are basic. Personality and Individual Differences, 13(6), 653665.
Cropley, A. J. (2006). In praise of convergent thinking. Creativity Research Journal, 18(3), 391404.
Cropley, D. H. (2014). Engineering, ethics and creativity: N’er the twain shall meet? In Moran, S., Cropley, D. H., & Kaufman, J. C. (Eds.), The ethics of creativity (pp. 152169). Basingstoke, UK: Palgrave MacMillan Ltd.
Cropley, D. H. (2015). Creativity in engineering: Novel solutions to complex problems. San Diego: Academic Press.
Cropley, D. H., & Cropley, A. J. (2000). Fostering creativity in engineering undergraduates. High Ability Studies, 11(2), 207219.
Cropley, D. H., & Cropley, A. J. (2005). Engineering creativity: A systems concept of functional creativity. In Kaufman, J. C. & Baer, J. (Eds.), Faces of the muse: How people think, work and act creatively in diverse domains (pp. 169185). Hillsdale: NJ: Lawrence Erlbaum.
Cropley, D. H., & Kaufman, J. C. (2012). Measuring functional creativity: Non-expert raters and the creative solution diagnosis scale. The Journal of Creative Behavior, 46(2), 119137.
Cropley, D. H., Kaufman, J. C., & Cropley, A. J. (2011). Measuring creativity for innovation management. Journal of Technology Management & Innovation, 6(3), 1330.
Csikszentmihalyi, M. (1988). Society, culture, and person: A systems view of creativity. In Sternberg, R. J. (Ed.), The nature of creativity (pp. 325339). New York: Cambridge University Press.
Csikszentmihalyi, M. (1999). Implications of a systems perspective for the study of creativity. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 313335). Cambridge, UK: Cambridge University Press.
Dieter, G. E., & Schmidt, L. C. (2012). Engineering design (5th ed.). New York: McGraw-Hill Higher Education.
Duncker, K. (1945). On problem-solving (Dashiell, J. F., Ed., Vol. 58). Washington DC: The American Psychological Association Inc.
Goclowska, M. A., Baas, M., Crisp, R. J., & De Dreu, C. K. W. (2014). Whether social schema violations help or hurt creativity depends on need for structure. Personality and Social Psychology Bulletin, 40(8), 959971.
Goldenberg, J., Mazursky, D., & Solmon, S. (1999). Toward identifying the inventive templates of new products: A channeled ideation approach. Journal of Marketing Research, 36, 200210.
Gruber, H. E., & Wallace, D. B. (1999). The case study method and evolving systems approach for understanding unique creative people at work. In Sternberg, R. (Ed.), Handbook of creativity (pp. 93115). New York, NY: Cambridge University Press.
Haught, C., & Johnson-Laird, P. N. (2003). Creativity and constraints: The production of novel sentences. Paper presented at the Proceedings of the 25th Annual Meeting of the Cognitive Science Society.
Heinelt, G. (1974). Kreative Lehrer/kreative Schüler [Creative Teachers/Creative Students]. Freiburg: Herder.
Horenstein, M. N. (2002). Design concepts for engineers (2nd ed.). Upper Saddle River, NJ: Prentice-Hall, Inc.
Ihsen, S., & Brandt, D. (1998). Editorial: Creativity: How to educate and train innovative engineers. European Journal of Engineering Education, 23(1), 34.
Kozbelt, A., Beghetto, R. A., & Runco, M. A. (2010). Theories of creativity. In Kaufman, J. C. & Sternberg, R. J. (Eds.), The Cambridge handbook of creativity (pp. 2047). New York, NY: Cambridge University Press.
Mednick, S. A. (1962). The associative basis of creativity. Psychological Review, 69, 220232.
Miller, A. I. (1992). Scientific creativity: A comparative study of Henri Poincare and Albert Einstein. Creativity Research Journal, 5(4), 385414.
Mishra, P., & Henriksen, D. (2013). A NEW approach to defining and measuring creativity: Rethinking technology & creativity in the 21st century. TechTrends, 57(5), 1013.
Mokyr, J. (1990). The lever of riches: Technological creativity and economic progress. New York, NY: Oxford University Press.
Moreau, P., & Dahl, D. W. (2005). The impact of constraints on consumers’ creativity. Journal of Consumer Research, 32(1), 1322.
Onarheim, B. (2012). Creativity from constraints in engineering design: Lessons learned at Coloplast. Journal of Engineering Design, 23(4), 323336.
Paulhus, D. L., & Williams, K. M. (2002). The dark triad of personality: Narcissism, Machiavellianism, and psychopathy. Journal of Research in Personality, 36(6), 556563.
Plucker, J. A., Beghetto, R. A., & Dow, G. T. (2004). Why isn’t creativity more important to educational psychologists? Potentials, pitfalls, and future directions in creativity research. Educational Psychologist, 39(2), 8396.
Plucker, J. A., & Makel, M. C. (2010). Assessment of creativity. In Kaufman, J. C. & Sternberg, R. J. (Eds.), The Cambridge handbook of creativity (pp. 4873). New York: Cambridge University Press.
Rhodes, M. (1961). An analysis of creativity. The Phi Delta Kappan, 42(7), 305310.
Sagiv, L., Arieli, S., Goldenberg, J., & Goldschmidt, A. (2010). Structure and freedom in creativity: The interplay between externally imposed structure and personal cognitive style. Journal of Organizational Behavior, 31(8), 10861110.
Sandwith, B. L. (2015). The influence of structure and personality on creativity in a military context. University of South Australia, Adelaide, Australia.
Stokes, P. D. (2008). Creativity from constraints: What can we learn from Motherwell? From Modrian? From Klee? The Journal of Creative Behavior, 42(4), 223236.
Taylor, I. A. (1975). An emerging view of creative actions. In Taylor, I. A. & Getzels, J. W. (Eds.), Perspectives in creativity (pp. 297325). Chicago: Aldine.
Torrance, E. P. (1966). Torrance tests of creative thinking: Technical norms manual. Lexington, MA: Personnel Press.
Urban, K. K., & Jellen, H. G. (1996). Test for Creative Thinking – Drawing Production (TCT-DP). Lisse, Netherlands: Swets and Zeitlinger.

References

Aiken, L. R. (1973). Ability and creativity in mathematics. Review of Educational Research, 43(4), 405432.
Baer, J. (1998). The case for domain specificity of creativity. Creativity Research Journal, 11, 173177.
Bal-Sezerel, B., & Sak, U. (2013). The Selective Problem Solving Model (SPS) and its social validity in solving mathematical problems. International Journal of Problem Solving and Creativity, 23(1), 7186.
Balka, D. S. (1974). The development of an instrument to measure creative ability in mathematics. (Unpublished doctoral dissertation). Edith University of Missouri, USA.
Bewersdorff, J. (2006). Galois theory for beginners: A historical perspective. Rhode Island: American Mathematical Society.
Carlton, L. V. (1959). An analysis of the educational concepts of fourteen outstanding mathematicians, 1790–1940, in the areas of mental growth and development, creative thinking and symbolism and meaning. (Unpublished doctoral dissertation). IL: Northwestern University, USA.
Casakin, H., & Kreitler, S. (2006). Self-assessment of creativity: Implications for design education. In DS 38: Proceedings of E&DPE 2006, The 8th International Conference on Engineering and Product Design Education (pp. 16). Salzburg, Austria.
Chamberlin, S. A., & Moon, S. M. (2005). Model-eliciting activities as tool to develop and identify creativity gifted mathematicians. Journal of Secondary Gifted Education, 17(1), 3747.
Charters, E. (2003). The use of think-aloud methods in qualitative research an introduction to think-aloud methods. Brock Education, 12(2), 6882.
Cohen, P. (2002). The discovery of forcing. Rocky Mountain Journal of Mathematics, 32(4), 10711100.
Davis, P. J., Hersh, R., & Marchisotto, E. A. (1995). The mathematical experience: Study edition. Boston: Birkhäuser.
De Groot, A. D. (1965). Thought and choice in chess. The Hague: Mouton Publishers.
Devlin, K. (2000). The math gene: How mathematical thinking evolved and why numbers are like gossip. New York: Basic Books.
Dowker, A. (2005). Individual differences in arithmetic: Implications for psychology, neuroscience and education. New York: Psychology Press.
Duncker, K. (1945). On problem solving. Psychological Monographs, 58(5), 1113.
Ericsson, K. A., & Simon, H. A. (1983). Verbal protocol analysis. Cambridge: The MIT Press.
Ericsson, K. A., & Simon, H. A. (1993). Protocol analysis. Cambridge: The MIT Press.
Ernest, P. (2002). The philosophy of mathematics education. Briston, PA: The Falmer Press.
Evans, E. W. (1964).Measuring the ability of students to respond in creative mathematical situations at the late elementary and early junior high school level. (Unpublished doctoral dissertation). University of Michigan, USA.
Fetterly, J. M. (2010). An exploratory study of the use of a problem-posing approach on pre-service elementary education teachers’ mathematical creativity, beliefs, and anxiety. (Unpublished doctoral dissertation). Florida State University, USA.
Gauss, C. F. (1966). Disquisitiones arithmeticae (Vol. 157). US: Yale University Press.
Getzels, J. W., & Jackson, P. W. (1961). Family environment and cognitive style: A study of the sources of highly intelligent and of highly creative adolescents. American Sociological Review, 26(3), 351359.
Getzels, J. W., & Jackson, P. W. (1962). Creativity and intelligence: Explorations with gifted students. American Journal of Sociology, 68(2), 278279.
Gindikin, S. (2007). Tales of mathematicians and physicists. NY: Springer Science & Business Media.
Hadamard, J. (1945). The psychology of invention in the mathematical field. New York: Dover Publications.
Han, K. S., & Marvin, C. (2002). Multiple creativities? Investigating domain specificity of creativity in young children. Gifted Child Quarterly, 46(2), 98109.
Handal, B. (2009). Philosophies and pedagogies of mathematics. Elementary Education Online, 8(1), 16.
Haylock, D. W. (1984). Aspects of mathematical creativity in children aged 11–12. (Unpublished doctoral dissertation). Chelsea Collage, University of London, England.
Haylock, D. W. (1985). Conflicts in the assessment and encouragement of mathematical creativity in schoolchildren. International Journal of Mathematical Education in Science and Technology, 16(4), 547553.
Haylock, D. W. (1987). A framework for assessing mathematical creativity in school children. Educational Studies in Mathematics, 18,1, 5974.
Herrera, H. (2002). Frida: A biography of Frida Kahlo. New York: HarperCollins.
Kantowski, M. G. (1977). Processes involved in mathematical problem solving. Journal for Research in Mathematics Education, 8(3), 163180.
Kaufman, J. C., Plucker, J. A., & Baer, J. (2008). Essentials of creativity assessment. New Jersey: John Wiley & Sons.
Kaufman, J. C. (2016). Creativity 101 (2nd edn.). New York: Springer Publishing Company.
Kettenmann, A. (1993). Frida Kahlo: Pain and passion. Köln: Taschen GmbH.
Khatena, J., & Torrance, E. P. (1976). Manual for Khatena-Torrance creative perception inventory. Chicago: Stoelting Company.
Kilic, S. (2012). Scientific art/artistic science. The Journal of Academic Social Science Studies, 5(1), 193203.
Kilpatrick, J., & Wirszup, I. (1976). The psychology of mathematical abilities in schoolchildren. London: The University of Chicago Press.
Kim, H., Cho, S., & Ahn, C. (2003). Development of mathematical creative problem solving ability test for identification of the gifted in math. Gifted Education International, 18(2), 164174.
Koichu, B., & Berman, A. (2005). When do gifted high school students use geometry to solve geometry problems? The Journal of Secondary Gifted Education, 16(4), 168179.
Krutetskii, V. A. (1976). The psychology of mathematical abilities in school children. London: The University of Chicago Press.
Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In Leikin, R., Berman, A., & Koichu, B. (Eds.), Creativity in mathematics and the education of gifted students (pp. 129145). Rotterdam: Sense Publishers.
Leikin, R., & Stanger, O. (2011). Teachers’ images of gifted students and the roles assigned to them in heterogeneous mathematics classes. In Sriraman, B. & Lee, K. E. (Eds.), The elements of creativity and giftedness in mathematics (pp. 14). Rotterdam: Sense Publishers.
Leikin, R., & Lev, M. (2013). Mathematical creativity in generally gifted and mathematically excelling adolescents: What makes the difference? ZDM Mathematics Education, 45(2), 183197.
Leu, Y. C., & Chiu, M. S. (2015). Creative behaviours in mathematics: Relationships with abilities, demographics, affects and gifted behaviours. Thinking Skills and Creativity, 16, 4050.
Levav-Waynberg, A., & Leikin, R. (2012). The role of multiple solution tasks in developing knowledge and creativity in geometry. Journal of Mathematical Behavior, 31, 7390.
Levenson, E. (2011). Exploring collective mathematical creativity in elementary school. Journal of Creative Behavior, 45(3), 215234.
Liljedahl, P. (2008). Mathematical creativity: In the words of the creators. In Proceedings of the 5th International Conference on Creativity in Mathematics and the Education of Gifted Students, Israel, 24–28 February 2008 (pp. 153159).
Livne, N. L., & Milgram, R. M. (2000). Assessing four levels of creative mathematical ability in Israeli adolescents utilizing out‐of‐school activities: A circular three‐stage technique. Roeper Review, 22(2), 111116.
Lopez-Real, F. (2006). A new look at a Polya problem. Mathematics Teaching, 196, 1216.
Mamona-Downs, J. (1993). On analyzing problem posing. In Proceedings of the 17th International Conference for the Psychology of Mathematics Education, Tsukuba, Japan, 18–23 July 1993 (Vol. 3, pp. 4147).
Mann, E. L. (2006). Creativity: The essence of mathematics. Journal for the Education of the Gifted, 30(2), 236260.
Mann, E. L. (2009). The search for mathematical creativity: Identifying creative potential in middle school students. Creativity Research Journal, 21(4), 338348.
Mason, J., & Johnston-Wilder, S. (2007). Designing and using mathematical tasks. London: Tarquin Pubns.
Mayer, R. E. (2013). Implications of cognitive psychology for instruction in mathematical problem solving. In Silver, E. A. (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 123138). New York: Routledge.
McCallum, R. S., & Bracken, B. (2005). The universal nonverbal intelligence test: A multidimensional measure of intelligence. In Flanagan, D. P. & Harrison, P. L. (Eds.), Contemporary intellectual assessment: Theories, test, and assessment (pp. 425440). New York: The Guilford Press.
Meyer, R. W. (1969). The identification and encouragement of mathematical creativity in first grade students. (Unpublished doctoral dissertation). University of Wisconsin, Madison.
Münz, M. (2013). The elements of mathematical creativity and the function of the attachment style in early childhood. In Online proceedings of the POEM conference, (pp. 111).
Nadjafikhah, M., Yaftian, N., & Bakhshalizadeh, S. (2012). Mathematical creativity: Some definitions and characteristics. Procedia-Social and Behavioral Sciences, 31, 285291.
Pelczer, I., & Rodriguez, F. G. (2011). Creativity assessment in school settings through problem posing tasks. The Montana Mathematics Enthusiast, 8, 383398.
Peng, S. L., Cherng, B. L., & Chen, H. C. (2013). The effects of classroom goal structures on the creativity of junior high school students. Educational Psychology, 33(5), 540560.
Piirto, J. (2004). Understanding creativity. Scottsdale: Great Potential Press.
Pittalis, M., Christou, C., Mousoulides, N., & Pitta-Pantazi, D. (2004). A structural model for problem posing. In Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 4956). Bergen, Norway.
Polya, D. (1954a). Induction and analogy in mathematics. Princeton, NJ: Princeton University Press.
Polya, D. (1954b). Patterns of plausible inference. Princeton, NJ: Princeton University Press.
Polya, D. (1957). How to solve it (2nd ed.). NJ: Princeton University Press.
Polya, D. (1962). Mathematical discovery. New York: John Wiley & Sons, Inc.
Poincare, H. (1951). Bilim ve metot [Science and method]. (Atademir, H. R. & Ölçen, S., Trans.). İstanbul: Milli Eğitim Basımevi.
Poincare, H. (1952). Science and hypothesis. New York: The Modern Library.
Poincare, H. (1958). The value of science. New York: The Modern Library.
Prabhu, V., & Czarnocha, B. (2013). Democratizing mathematical creativity through Koestler’s Bisociation Theory. Mathematıcs Teachıng-Research Journal Online, 6(2), 3346.
Preckel, F., Goez, T., Pekrun, R., & Kleine, M. (2008). Self-concept, interest, and motivation in mathematics gender differences in gifted and average-ability students: Comparing girls’ and boys’ achievement. Gifted Child Quarterly, 52(2), 146159.
Prouse, H. L. (1967). Creativity in school mathematics. The Mathematics Teacher, 60, 876879.
Rothman, T. (1982). Genius and biographers: The fictionalization of Evariste Galois. American Mathematical Monthly, 89(2), 84106.
Runco, M. A. (1996). Personal creativity: Definition and developmental issues. New Directions for Child Development, 72, 330
Runco, M. A. (2004). Creativity. Annual Review of Psychology, 55, 657687.
Runco, M. A., & Jaeger, G. J. (2012). The standard definition of creativity. Creativity Research Journal, 24(1), 9296.
Sak, U. (2005). M³: The three-mathematical minds model for the identification of mathematically gifted students. (Unpublished doctoral dissertation). University of Arizona, USA.
Sak, U. (2009). Test of the three-mathematical minds (M3) for the identification of mathematically gifted students. Roeper Review, 31, 5367.
Sak, U. (2011). Selective Problem Solving (SPS): A model for teaching creative problem solving. Gifted Education International, 27(3), 349357.
Sawyer, R. K. (2006). Explaining creativity. New York: Oxford University Press.
Schaefer, C. E., & Bridges, C. I. (1970). Development of a creativity attitude survey for children. Perceptual and Motor Skills, 31(3), 861862.
Schoenfeld, A. H. (1994). What do we know about mathematics curricula? Journal of Mathematical Behavior, 13, 5580.
Sheffield, L. J. (2000). Creating and developing promising young mathematicians. Teaching Children Mathematics, 6(6), 416419.
Sheffield, L. J. (2009). Developing mathematical creativity – questions may be the answer. In Leikin, R., Berman, A., & Koichu, B. (Eds.), Creativity in mathematics and the education of gifted students (pp. 87100). Rotterdam: Sense Publishers.
Sheffield, L. J. (2013). Creativity and school mathematics: Some modest observations. ZDM Mathematics Education, 45(2), 325332.
Shriki, A. (2010). Working like real mathematicians: Developing prospective teachers’ awareness of mathematical creativity through generating new concepts. Educational Studies in Mathematics, 73(2), 159179.
Siegle, D., & Powell, T. (2004). Exploring teacher biases when nominating students for gifted programs. Gifted Child Quarterly, 48(1), 2129.
Silver, E. A. (1994). On mathematical problem solving. For the Learning of Mathematics, 14(1), 1928.
Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and problem posing. ZDM Mathematics Education, 29(3), 7580.
Simonton, D. K. (1988). Age and outstanding achievement: What do we know after a century of research? Psychological Bulletin, 104(2), 251267.
Simonton, D. K. (1991). Career landmarks in science: Individual differences and interdisciplinary contrasts. Developmental Psychology, 27(1), 119130.
Simonton, D. K. (2004). Creativity in science: Chance, logic, genius, and zeitgeist. New York: Cambridge University Press.
Singer, F. M., Pelczer, I., & Voica, C. (2011). Problem posing and modification as a criterion of mathematical creativity. In Proceedings of the 7th Conference of the European Society for Research in Mathematics Education (CERME 7) (pp. 11331142). Rzeszow, Poland.
Sriraman, B. (2004). The characteristics of mathematical creativity. The Mathematics Educator, 14, 1924.
Sriraman, B., & Lee, K. E. (2011). What are the elements of giftedness and creativity in mathematics? In Sriraman, B. & Lee, K. E. (Eds.), The elements of creativity and giftedness in mathematics (pp. 14). Rotterdam: Sense Publishers.
Stanley, J. (2005). Fallibilism and concessive knowledge attributions. Analysis, 65(2), 126131.
Sternberg, R. J., & Lubart, T. I. (1995). Defying the crowd: Cultivating creativity in a culture of conformity. New York: The Free Press.
Sternberg, R. J., Kaufman, J. C., & Grigorenko, E. L. (2008). Applied intelligence. New York: Cambridge University Press.
Sternberg, R. J., & Kaufman, J. C. (2010). Constrains on creativity: Obvious and not so obvious. In Kaufman, J. C. & Sternberg, R. J. (Eds.), The Cambridge handbook of creativity (pp. 467482). New York: Cambridge University Press.
Stoyanova, E. N. (1997). Extending and exploring students’ problem solving via problem posing: A study of years 8 and 9 students involved in Mathematics Challenge and Enrichment Stages of Euler Enrichment Program for Young Australians. (Unpublished doctoral dissertation). Edith Cowan University, Australia.
Suydam, M. N., & Weaver, J. F. (1971). Research on mathematics education (K-12) reported in 1970. Journal for Research in Mathematics Education, 2(4), pp. 257298.
Tjoe, H. H. (2011). Which approaches do students prefer? Analyzing the mathematical problem solving behavior of mathematically gifted students. (Unpublished doctoral dissertation). Columbia University, USA.
Urban, K. K. (1991). Recent trends in creativity research and theory in Western Europe. European Journal of High Ability, 1(1), 99113.
Van den Heuvel-Panhuizen, M., Middleton, J. A., & Streefland, L. (1995). Student-generated problems: Easy and difficult problems on percentage. For the Learning of Mathematics, 15(3), 2127.
Van Someren, M. W., Barnard, Y. F., & Sandberg, J. A. (1994). The think aloud method: A practical guide to modelling cognitive processes. London: Academic Press.
Vivona, R. F. (1998). Toward a theory of mathematical creativity. (Unpublished doctoral dissertation). Union Institute, USA.
Wallas, G. (1926). The art of thought. New York: Harcourt, Brace and Company.
Weisberg, R. W. (1993). Creativity: Understanding innovation in problem solving, science, invention, and the arts. New Jersey: Wiley.
Weisberg, R. W. (1999). Creativity and knowledge: A challenge to theories. In Sternberg, R. J. (Ed.), Handbook of creativity (pp. 226250). New York: Cambridge University Press.
Wiles, A. (1995). Modular eliptic curves and Fermat’s last theorem. Annals of Mathematics, 142, 443551.
Wertheimer, M. (1945). Productive thinking. New York: Harper.

References

Amabile, T. M. (1988). A model of creativity and innovation in organizations. Research in Organizational Behavior, 10(1), 123167.
Anderson, M. (2015). Technology device ownership: 2015. Pew Research Center. Retrieved on August 14, 2016, from www.pewinternet.org/2015/10/29/technology-device-ownership-2015/
Bauer, W. F., Juncosa, M. L., & Perlis, A. J. (1959). ACM publication policies and plans. Journal of the ACM (JACM), 6(2), 121122.
Beghetto, R. A. (2014). Creative mortification: An initial exploration. Psychology of Aesthetics, Creativity, and the Arts, 8(3), 266.
Blackwell, A., & Collins, N. (2005). The programing language as a musical instrument. In Romero, P., Good, J., Chaparro, E. Acosta, & Bryant, S. (Eds.), Proceedings of Psychology of Programming Interest Group (PPIG), 17, pp. 120130.
Blue, V. (2016, October 28). That time your smart toaster broke the internet [Blog post]. Engadget. Retrieved on October 29, 2016, from www.engadget.com/2016/10/28/that-time-your-smart-toaster-broke-the-internet/
Bond, G. W. (2005). Software as art. Communications of the ACM, 48(8), 118125. DOI:10.1145/1076211.1076215.
Bowcott, O. (2012, October 16). Gary McKinnon: How unknown hacker sparked political and diplomatic storm. The Guardian. Retrieved on September 21, 2016, from www.theguardian.com/world/2012/oct/16/gary-mckinnon-hacker-sparked-storm
Brockwell, H. (2016, April 3). Forgotten genius: The man who made a working VR machine in 1957. TechRadar. Retrieved on September 21, 2016, from www.techradar.com/news/wearables/forgotten-genius-the-man-who-made-a-working-vr-machine-in-1957–1318253
Bromley, A. G. (1982). Charles Babbage’s analytical engine, 1838. Annals of the History of Computing, 4(3), 196217.
Broukhis, L., Cooper, S., and Noll, L. (n.d.). The international obfuscated C code contest. Retrieved on September 21, 2016 from http://www.ioccc.org/index.html
Brusilovsky, P., Calabrese, E., Hvorecky, J., Kouchnirenko, A., & Miller, P. (1997). Mini-languages: A way to learn programming principles. Education and Information Technologies, 2(1), 6583.
BusinessDictionary.com. (n.d.). Computer science Retrieved October 21, 2016, from www.businessdictionary.com/definition/computer-science.html
Carmody, T. (2013, January 24). Amazon acquires Kindle Fire text-to-speech provider, but this isn’t about Siri. The Verge. Retrieved on October 21, 2016 from www.theverge.com/2013/1/24/3911056/amazon-acquires-kindle-fire-text-to-speech-provider-but-this-isnt
Cennamo, K., Douglas, S. A., Vernon, M., Brandt, C., Scott, B., Reimer, Y., & McGrath, M. (2011). Promoting creativity in the computer science design studio. Proceedings of the 42nd ACM Technical Symposium on Computer Science Education, 649654.
Cohen, H. (1999a). Colouring without seeing: A problem in machine creativity. AISB Quarterly, 102, 2635.
Cohen, H. (1999b). A self-defining game for one player. Proceedings of the 3rd conference on Creativity & Cognition, 14. DOI: 10.1145/317561.317564
Comer, D. E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J., Young, P. R., & Denning, P. J. (1989). Computing as a discipline. Communications of the ACM, 32(1), 923.
Cropley, D. H., Cropley, A. J., Kaufman, J. C., & Runco, M. A. (Eds.). (2010). The dark side of creativity. New York, NY: Cambridge University Press.
Cropley, D. H., Kaufman, J. C., & Cropley, A. J. (2008). Malevolent creativity: A functional model of creativity in terrorism and crime. Creativity Research Journal, 20(2), 105115.
Cropley, D. H., Kaufman, J. C., White, A. E., & Chiera, B. A. (2014). Layperson perceptions of malevolent creativity: The good, the bad, and the ambiguous. Psychology of Aesthetics, Creativity, and the Arts, 8(4), 400.
Denning, P. J. (2005). Is computer science science? Communications of the ACM, 48(4), 2731. DOI:10.1145/1053291.1053309
Denning, P. J. (2010). The great principles of computing: Computing may be the fourth great domain of science along with the physical, life and social sciences. American Scientist, 98(5), 369.
Dexter, S., & Kozbelt, A. (2013). Free and open source software (FOSS) as a model domain for answering big questions about creativity. Mind & Society, 12(1), 113123.
Dictionary.com Unabridged. (n.d.). Computer science. Retrieved on August 7, 2016, from http://www.dictionary.com/browse/computer-science
Ducklin, P. (2015, September 28). Why Word “macro malware” is back, and what you can do about it … [Blog post] Naked Security by Sophos. Retrieved September 22, 2016 from https://nakedsecurity.sophos.com/2015/09/28/why-word-macro-malware-is-back-and-what-you-can-do-about-it/
Edwards, L. (2016, June 16). What is Magic Leap and why might it kill all screens? Pocket-lint. Retrieved on October 30, 2016, from http://www.pocket-lint.com/news/135688-what-is-magic-leap-and-why-might-it-kill-all-screens
Empirical Games (n.d.). http://www.empiricalgames.org/games/
Fein, L. (1959). The role of the university in computers, data processing, and related fields. Communications of the ACM, 2(9), 714. DOI:10.1145/368424.368427
Fellows, M., & Parberry, I. (1993). SIGACT trying to get children excited about CS. Computing Research News, 5(1), 7.
Fieldman, T. (2015, May 13). Moore’s law turns 50. The New York Times. Retrieved on August 6, 2016 from http://nyti.ms/1IAnBxP
Fingas, J. (2016, August 7). IBM’s Watson AI saved a woman from leukemia. Engadget. Retrieved on September 21, 2016, from www.engadget.com/2016/08/07/ibms-watson-ai-saved-a-woman-from-leukemia/
Garrie, D. B. (2012). Effective keyword selection requires a mastery of storage technology and the law. Pace Law Review, 32(2), pp. 400406.
Germ, E. (2013, January 15). 6 Awesome Easter eggs hidden in programs you use every day. Cracked. Retrieved on October 21, 2016, from www.cracked.com/article_20174_6-awesome-easter-eggs-hidden-in-programs-you-use-every-day.html
Glass, R. L., & DeMarco, T. (2006). Software creativity 2.0. developer.* Books.
Glăveanu, V. P. (2014). Distributed creativity: Thinking outside the box of the creative individual. New York: Springer International Publishing.
Graham, P. (2004). Hackers & painters: Big ideas from the computer age. Sebastopol, CA: O’Reilly Media, Inc.
Graziotin, D., Wang, X., & Abrahamsson, P. (2014). Software developers, moods, emotions, and performance. IEEE Software, 31(4), 2427.
GReAT. (2016, August 9). The Project Sauron APT. Global Research and Analysis Team Kaspersky Lab. Retrieved September 21, 2016, from https://kas.pr/a9sn
Green, G., & Kaufman, J. C. (Eds.). (2015). Video games and creativity. Academic Press.
Gu, M., & Tong, X. (2004). Towards hypotheses on creativity in software development. International Conference on Product Focused Software Process Improvement, 4761.
Guilford, J. P. (1950). Creativity. American Psychologist, 5(9), 444454. DOI:10.1037/h0063487
Hasselström, K., & Åslund, J. (2001, August 21). The Shakespeare programming language. Retrieved on August 16, 2016, from http://shakespearelang.sourceforge.net/report/shakespeare/
Hewitt, A. (2013, July 3). Discover the coded message hidden in campus floor tiles. UCLA Newsroom. Retrieved on October 17, 2016, from http://newsroom.ucla.edu/stories/a-coded-message-hidden-in-floor-247232
Hofstadter, D. R. (1996). Fluid concepts & creative analogies: Computer models of the fundamental mechanisms of thought. New York: Basic Books.
Hong, L. (2013, May 30). The 5 most creative ‘developer job ads.’ [Blog post]Smart Recruiters. Retrieved on October 23, 2016, from https://www.smartrecruiters.com/blog/the-5-most-creative-developer-job-ads/
Hopkins, S. (1995). Listen. In The Princeton Encyclopedia of Poetry and Poetics, 2012, 396397.
Res, H.. 269, 107th Cong., 148 Cong. Rec. H3308 (2002).
Virtual Reality Society (n.d.). How did virtual reality begin? Retrieved on September 21, 2016. from www.vrs.org.uk/virtual-reality/beginning.html
Howard, E. V., Bulach, T. M., Carver, L. A., Creekbaum, C. R., Parker, R. J., & Shockley, L. G. (2009). Perceptions of using creativity in an IT ethics course–A case study of students and instructor. Proceedings of the Information Systems Education Conference, 26.
International Telecommunication Union (ITU) (n.d.). Internet of things global standards initiative. Retrieved on September 21, 2016. from www.itu.int/en/ITU-T/gsi/iot/Pages/default.aspx
Jordanous, A. (2014, April 10). What is computational creativity? [Blog post]. The Creativity Post. Retrieved on September 5, 2016. from www.creativitypost.com/science/what_is_computational_creativity
Kaufman, J. C. (2006). Self‐reported differences in creativity by ethnicity and gender. Applied Cognitive Psychology, 20(8), 10651082.
Kaufman, J. C. (2010). Using creativity to reduce ethnic bias in college admissions. Review of General Psychology, 14(3), 189.
Kaufman, J. C. (2016). Creativity 101. New York: Springer Publishing Company.
Kaufman, J. C., & Baer, J. (2004). Sure, I’m creative—but not in mathematics!: Self-reported creativity in diverse domains. Empirical Studies of the Arts, 22(2), 143155.
Kaufman, J. C., & Baer, J. (2002). Could Steven Spielberg manage the Yankees?: Creative thinking in different domains. Korean Journal of Thinking and Problem Solving, 12(2), 514.
Kaufman, J. C., & Baer, J. (2012). Beyond new and appropriate: Who decides what is creative? Creativity Research Journal, 24(1), 8391.
Kaufman, J. C., Baer, J., & Gentile, C. A. (2004). Differences in gender and ethnicity as measured by ratings of three writing tasks. The Journal of Creative Behavior, 38(1), 5669.
Kaufman, J. C., & Sternberg, R. J. (2007). Resource review: Creativity. Change, 39(4), 5558.
Kemps, H. (2013, May 22). The funny, occasionally dirty, hidden messages in your favorite games. WIRED. Retrieved on October 21, 2016. from https://www.wired.com/2013/05/hidden-messages/
Khatchadourlan, R. (2015, May 18). World without end. The New Yorker. Retrieved on September 21, 2016. from www.newyorker.com/magazine/2015/05/18/world-without-end-raffi-khatchadourian
Kiefaber, D. (2013, May 28) Flickr recruits coders with ads hidden in its website’s source code. Adweek. Retrieved on August 16, 2016. from www.adweek.com/adfreak/flickr-recruits-coders-ads-hidden-its-websites-source-code-149818
King, A. (2015, April 10). The key design elements of Roguelikes. Envato. Retrieved on September 21, 2016. from https://gamedevelopment.tutsplus.com/articles/the-key-design-elements-of-roguelikes–cms–23510
Knobelsdorf, M., & Romeike, R. (2008). Creativity as a pathway to computer science. ACM SIGCSE Bulletin, 40(3) 286290.
Knuth, D. E. (2001). Things a computer scientist rarely talks about. Stanford, CA: CSLI Publications.
Knuth, D. E. (1974). Computer programming as an art. Communications of the ACM, 17(12), 667673. DOI:10.1145/361604.361612
Kozbelt, A. (2006). Dynamic evaluation of Matisse’s 1935 large reclining nude. Empirical Studies of the Arts, 24(2), 119137.
Kozbelt, A. (2009). Ontogenetic heterochrony and the creative process in visual art: A précis. Psychology of Aesthetics, Creativity, and the Arts, 3(1), 3537.
Kozbelt, A., Dexter, S., Dolese, M., & Seidel, A. (2012). The aesthetics of software code: A quantitative exploration. Psychology of Aesthetics, Creativity, and the Arts, 6(1), 57.
Lakhani, K., & Wolf, R. G. (2003). Why hackers do what they do: Understanding motivation and effort in free/open source software projects. Social Science Research Network (SSRN) Journal. DOI: 10.2139/ssrn.443040
Leach, R. J., & Ayers, C. A. (2005). The psychology of invention in computer science. In Romero, P., Good, J., Chaparro, E. Acosta, & Bryant, S. (Eds), Proceedings of Psychology of Programming Interest Group (PPIG), 17, pp. 131144.
Lewandowski, G., Johnson, E., & Goldweber, M. (2005). Fostering a creative interest in computer science. ACM SIGCSE Bulletin, 37(1), pp. 535539.
Lomas, N. (2015, March 2). Google’s Pichai talks up Magic Leap’s AR but says “It’ll take some time.” Tech Crunch. Retrieved on October 29, 2016, from https://techcrunch.com/2015/03/02/pichai-magic-leap/
London, E. (2013, May 30). Google Glass: inspired by Terminator [Blog post] Slice of MIT. Retrieved on September 18, 2016 from https://slice.mit.edu/2013/05/30/google-glass-inspired-by-terminator/
Luria, S. R., O’Brien, R. L., & Kaufman, J. C. (2016). Creativity in gifted identification: Increasing accuracy and diversity. Annals of the New York Academy of Sciences, 1377(1), 4452.
McCormack, J., & d’Inverno, M. (2012). Computers and creativity: The road ahead. In McCormack, J. & d’Inverno, M. (Eds.), Computers and creativity (pp. 421424) New York: Springer.
McKeand, K. (2015, October 10). Elite: Dangerous shows us the science and technology behind creating realistic planets [Blog post]. PCGamesN.com. Retrieved on September 21, 2016 from http://www.pcgamesn.com/elite-dangerous/elite-dangerous-shows-us-the-science-and-technology-behind-creating-realistic-planets
Milgram, P., & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information and Systems, 77(12), 13211329.
Clay Mathematics Institute, (n.d.). Millennium Prize Problems. Retrieved on October 28, 2016 from www.claymath.org/millennium-problems/millennium-prize-problems.
Moore, G. E. (1975). Progress in digital integrated electronics. International Electron Devices Meeting Tech Digest, IEEE, 1113.
Moore, G. E. (2006). Cramming more components onto integrated circuits. Solid-State Circuits Newsletter, IEEE, 20(3), 3335. (Reprinted from Electronics, 38(8), April 19, 1965, p. 114). DOI:10.1109/N-SSC.2006.4785860
Newell, A., Perlis, A. J., & Simon, H. A. (1967). Computer science. Science, 157(3795), 13731374.
O’Brien, T. (2015, June 20). Watson’s South American spin on a Canadian classic. Engadget. Retrieved on September 21, 2016, from www.engadget.com/2015/06/20/cooking-with-watson-peruvian-potato-poutine/
Palande, S. (2014, June 23). 10 Best hackers the world has ever known. Thought Catalog. Retrieved August 16, 2016, from http://tcat.tc/1sA0fm6
Palermo, E. (2014, February 15) Who invented the light bulb? [Blog post]. Live Science. Retrieved on September 22, 2016, from www.livescience.com/43424-who-invented-the-light-bulb.html
Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books, Inc.
Park, R. (2015, November 9). Guide to zero-day exploits [Blog post] Symantec. Retrieved on October 21, 2016, from www.symantec.com/connect/blogs/guide-zero-day-exploits
Peppler, K. and Kafai, Y. (2009): Creative coding: Programming for personal expression. Proceedings of the 9th International Conference on Computer Supported Collaborative Learning (CSCL), Rhodes, Greece.
Plucker, J. A., Beghetto, R. A., & Dow, G. T. (2004). Why isn’t creativity more important to educational psychologists? Potentials, pitfalls, and future directions in creativity research. Educational Psychologist, 39(2), 8396.
Przybylla, M., & Romeike, R. (2014) Overcoming issues with students’ perceptions of informatics in everyday life and education with physical computing. Proceedings of the 7th International Conference on Informatics in Schools: Situation, Evolution and Perspectives (ISSEP), (pp. 920).
Reiter-Palmon, R., & Robinson, E. J. (2009). Problem identification and construction: What do we know, what is the future? Psychology of Aesthetics, Creativity, and the Arts, 3(1), 43.
Resnick, M. (2008). Sowing the seeds for a more creative society. Learning & Leading with Technology, 35(4), 1822.
Rhodes, M. (1961). An analysis of creativity. The Phi Delta Kappan, 42(7), 305310.
Romeike, R. (2007). Applying creativity in CS high school education: Criteria, teaching example and evaluation. Proceedings of the Seventh Baltic Sea Conference on Computing Education Research-Volume 88, 8796.
Romeike, R. (2007). Three drivers for creativity in computer science education. Proceedings of the IFIP-Conference on “Informatics, Mathematics and ICT: a golden triangle.” Boston, USA.
Romeike, R. (2008). Workshop: A creative introduction to programming with scratch. In Learning to live in the knowledge society, 281 (pp. 341344). New York: Springer. DOI: 10.1007/978-0-387-09729-9_49
Romeike, R. (2008). What’s my challenge? The forgotten part of problem solving in computer science education. In Informatics Education – Supporting Computational Thinking, 5090 (pp. 122133). DOI:10.1007/978–3-540–69924-8_11
Rosett, M. (2015, August 24). Google has a secret interview process … and it landed me a job. [Blog post]. The Hustle. Retrieved on August 16, 2016 from http://thehustle.co/the-secret-google-interview-that-landed-me-a-job
Saunders, D., & Thagard, P. (2005). Creativity in computer science. In Kaufman, J. C. & Baer, J. (Eds.), Creativity across domains: Faces of the muse (pp. 153167). Psychology Press.
Shute, V. J., Ventura, M., & Kim, Y. J. (2013). Assessment and learning of qualitative physics in newton’s playground. The Journal of Educational Research, 106(6), 423430.
Shute, V., & Ventura, M. (2013). Stealth assessment: Measuring and supporting learning in video games. MIT Press.
Simonton, D. K. (2009). Varieties of (scientific) creativity: A hierarchical model of domain-specific disposition, development, and achievement. Perspectives on Psychological Science : A Journal of the Association for Psychological Science, 4(5), 441452. DOI:10.1111/j.1745–6924.2009.01152.x
Sirius, R. U. (2000). Superhacker Kevin Mitnick: Menace to fear or rogue to love? Village Voice, 22
Skibell, R. (2002). The myth of the computer hacker. Information, Communication & Society, 5(3), 336356.
Sneed, A. (2015, May 19). Moore’s law keeps going, defying expectations. Scientific America. Retrieved on August 6, 2016, from www.scientificamerican.com/article/moore-s-law-keeps-going-defying-expectations/
Somenkov, I. (2012a, March 7). The mstery of the Duqu framework [Blog post]. Securelist Kasperky Lab. Retrieved on October 21, 2016, from https://securelist.com/blog/research/32086/the-mystery-of-the-duqu-framework–6/
Somenkov, I. (2012b, March 19). The mystery of the Duqu framework solved [Blog post]. Securelist Kasperky Lab. Retrieved on October 21, 2016, from https://securelist.com/blog/research/32354/the-mystery-of-duqu-framework-solved–7/
Sternberg, R. J., Kaufman, J. C., & Pretz, J. E. (2001). The propulsion model of creative contributions applied to the arts and letters. Journal of Creative Behavior, 35(2), 75101.
Sternberg, R. J., Kaufman, J. C., & Pretz, J. E. (2004). A propulsion model of creative leadership. Creativity and Innovation Management, 13(3), 145153.
Tang, C., Baer, J., & Kaufman, J. C. (2015). Implicit theories of creativity in computer science in the United States and China. Journal of Creative Behavior, 49(2), 137156. doi:10.1002/jocb.61
Torrance, E. P. (2008). The Torrance Tests of Creative Thinking Norms-Technical Manual Figural (Streamlined) Forms A & B. Bensenville, IL: Scholastic Testing Service
Christie Medical Holdings, Inc (n.d.). Vein illumination. Retrieved on September 21, 2016, from www.christiemed.com/vein-illumination
Verma, A. (2016, May 24). Japan just made computer programming a compulsory subject in its schools [Blog post]. fossBytes. Retrieved on November 4, 2016, from https://fossbytes.com/japan-computer-programming-compulsory-subject-schools/
Vollmer, J. (2016, July 14). The biggest hacker whodunit of the summer [Blog post]. Motherboard. Retrieved on September 22, 2016, from http://motherboard.vice.com/read/the-biggest-hacker-whodunnit-of-the-summer
Wing, J. (2014, January 10). Computational thinking benefits society [Blog post]. Social Issues in Computing. Retrieved on October 29, 2016, from http://socialissues.cs.toronto.edu/2014/01/computational-thinking/
Zetter, K. (2012, May 28). Meet ‘Flame,’ the massive spy malware infiltrating Iranian computers. WIRED. Retrieved on September 21, 2016, from www.wired.com/2012/05/flame/
Zimmer, B. (2011, February 17). Is it time to welcome our new computer overlords? The Atlantic. Retrieved on September 21, 2016, from www.theatlantic.com/technology/archive/2011/02/is-it-time-to-welcome-our-new-computer-overlords/71388/