Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-7wlv9 Total loading time: 1.082 Render date: 2022-05-18T11:03:39.664Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Chapter 5 - Temporal Lobe: Neocortical Structures

Published online by Cambridge University Press:  22 February 2018

David L. Clark
Affiliation:
Ohio State University
Nash N. Boutros
Affiliation:
University of Missouri, Kansas City
Mario F. Mendez
Affiliation:
University of California, Los Angeles
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Brain and Behavior
An Introduction to Behavioral Neuroanatomy
, pp. 56 - 72
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

David, A. S., Fleminger, S., Kopelman, M. D., Lovestone, S., and Mellers, J. D. C. (2009). Lishman’s Organic Psychiatry. Oxford, UK: Wiley-Blackwell.CrossRefGoogle Scholar
Ellis, H. D., Luaute, J.-P., and Retterstol, N. (1994). Delusional misidentification syndromes. Psychopathology 27, 117120 (1 of 25 articles on this topic in this issue of Psychopathology).CrossRefGoogle ScholarPubMed
Gloor, P. (1997) The Temporal Lobe and Limbic System. New York, NY: Oxford University Press.Google ScholarPubMed
Goldenberg, G., and Miller, B. L. (Eds.) (2008). Neuropsychology and Behavioral Neurology. New York, NY: Elsevier.Google Scholar
Pickles, J. O. (2012). An Introduction to the Physiology of Hearing (4th edn.). Bingley, UK: Emerald Insight Limited.Google Scholar
Adolphs, R. (2009). The social brain: Neural basis of social knowledge. Ann. Rev. Psychology., 60, 693716. doi:10.1146/annurev.psych.60.110707.163514CrossRefGoogle ScholarPubMed
Ahveninen, J., Kopco, K., and Jääskeläinen, I. P. (2013). Psychophysics and neuronal bases of sound localization in humans. Hear. Res., 307. doi:10.1016/j.heares.2013.07.008Google ScholarPubMed
Allen, M., Fardo, F., Dietz, M. J., Hillebrandt, H., Friston, K. J., Rees, G., and Roepstorff, A. (2016). Anterior insula coordinates hierarchical processing of tactile mismatch responses. Neuroimage, 127, 3443. doi:10.1016/j.neuroimage.2015.11.030CrossRefGoogle ScholarPubMed
Amodio, D. M., and Frith, C. D. (2006). Meeting of the minds: The medial frontal cortex and social cognition. Nat. Rev. Neurosci., 7, 268277. doi:10.1038/nrn1884CrossRefGoogle ScholarPubMed
Andreasen, N. C., Nopoulos, P., Magnotta, V., Pierson, R., Ziebell, S., and Ho, B. C. (2011). Progressive brain change in schizophrenia: a prospective longitudinal study of first-episode schizophrenia. Biol. Psychiatry, 70, 672679. doi:10.1016/j.biopsych.2011.05.017CrossRefGoogle ScholarPubMed
Astafiev, S. V., Shulman, G. L., and Corbetta, M. (2006). Visuospatial reorienting signals in the human temporo-parietal junction are independent of response selection. Eur. J. Neurosci., 23, 591596. doi:10.1111/j.1460–9568.2005.04573.xCrossRefGoogle ScholarPubMed
Ay, H., Koroshetz, W. J., Benner, T., Vangel, M. G., Melinosky, C., Arsava, E. M.,… Sorensen, A. G. (2006). Neuroanatomic correlates of stroke-related myocardial injury. Neurology, 66(9), 13251329. doi:10.1212/01.wnl.0000206077.13705.6dCrossRefGoogle ScholarPubMed
Barch, D. M., and Ceaser, A. (2012). Cognition in schizophrenia: Core psychological and neural mechanisms. Trends. Cogn. Sci., 16(1), 2134. doi:10.1016/j.tics.2011.11.015CrossRefGoogle ScholarPubMed
Beal, D. S., Gracco, V. L., Lafaille, S. J., and Beal, L. F. (2007). Voxel-based morphometry of auditory and speech-related cortex of stutters. Neuroreport, 18, 12571260. doi:10.1097/WNR.0b013e3282202c4dCrossRefGoogle Scholar
Bizley, J. K., and Cohen, Y. E. (2013). The what, where and how of auditory-object perception. Nat. Rev. Neurosci., 14, 693707. doi:10.1038/nrn3565CrossRefGoogle ScholarPubMed
Blakemore, S-J. (2008). The social brain in adolescence. Nat. Rev. Neurosci., 9, 267276. doi:10.1038/nrn2353CrossRefGoogle ScholarPubMed
Blanke, O., and Arzy, S. (2005). The out-of-body experience: Disturbed self-processing at the temporo-parietal junction. Neuroscientist, 11, 1624. doi:10.1177/1073858404270885CrossRefGoogle ScholarPubMed
Boccia, M., Piccardi, L., and Paola, G. (2015). How treatment affects the brain: Meta-analysis evidence of neural substrates underpinning drug therapy and psychotherapy in major depression. Brain Imaging Behav., Epub ahead of print, doi:10.1007/s11682-015-9429xGoogle ScholarPubMed
Boksa, P. (2012). Abnormal synaptic pruning in schizophrenia: Urban myth or reality? J. Psychiatry Neurosci., 37, 7577. doi:10.1503/jpn.120007CrossRefGoogle ScholarPubMed
Bottini, G., Karnath, H. O., Vallar, G., Sterzi, R., Frith, C. D., Frackowiak, R. S., and Paulesu, E. (2001). Cerebral representations for egocentric space: Functional-anatomical evidence from caloric vestibular stimulation and neck vibration. Brain, 134, 11821196. doi:10.1093/brain/124.6.1182 1182–1196CrossRefGoogle Scholar
Brown, S., Ingham, R. J., Ingham, J. C., Laird, A. R., and Fox, P. T. (2005). Stuttered and fluent speech production: An ALE meta-analysis of functional neuroimaging studies. Hum. Brain Mapp., 25, 105117. doi:10.1002/hbm.20140CrossRefGoogle ScholarPubMed
Brunswick, N., McCrory, E., Price, C., Frith, C. D. and Frith, U. (1999). Explicit and implicit processing of words and pseudowords by adult developmental dyslexics a search for Wernicke’s Wortschatz? Brain, 122, 19011917. doi.org/10.1093/brain/122.10.1901CrossRefGoogle ScholarPubMed
Büchel, C., Price, C. J. and Friston, K. J. (1998). A multimodal language area in the ventral visual pathway. Nature, 394, 274277. doi:10.1038/28389CrossRefGoogle ScholarPubMed
Cole, M. W., and Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. Neuroimage, 37, 343360. doi:10.1016/j.neuroimage.2007.03.071CrossRefGoogle ScholarPubMed
Cox, D., Meyers, E., and Sinha, P. (2004). Contextually evoked object-specific responses in human visual cortex. Science, 304, 115117. doi:10.1126/science.1093110Google Scholar
Craig, A. D. (2010). Once an island, now the focus of attention. Brain Struct. Funct., 214, 395396. doi:10.1007/s00429-010–0270-0CrossRefGoogle ScholarPubMed
Critchley, H. D., Wiens, S., Rothstein, P., Ohman, A., and Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nat. Neurosci., 7, 189195. doi:10.1038/nn1176CrossRefGoogle ScholarPubMed
Cutting, J. 1994. Evidence for right hemisphere dysfunction in schizophrenia. In David, A. S. and Cutting, J. C. (Eds.), The Neuropsychology of Schizophrenia. Hove, England, UK: Erlbaum, pp. 242342.Google Scholar
De Ridder, D., Van Laere, K., Dupont, P., Menovsky, T., and Van de Heyning, P. (2007). Visualizing out-of-body experience in the brain. N. Engl. J. Med., 357, 18291833. doi:10.1056/NEJMoa070010CrossRefGoogle Scholar
Decety, J. and Lamm, C. (2007). The role of the right temporoparietal junction in social interaction: How low-level computational processes contribute to mega-cognition. Neuroscientist, 13, 580593. doi:10.1177/1073858407304654CrossRefGoogle Scholar
Di Martino, A., Ross, K., Uddin, L. Q., Sklar, A. B., Castellanos, F. X., and Milham, M. P. (2009). Functional brain correlates of social and nonsocial processes in autism spectrum disorders: An activation likelihood estimation meta-analysis. Biol. Psychiatry, 65, 6374. doi:10.1016/j.biopsych.2008.09.022CrossRefGoogle ScholarPubMed
Drake, M. E. Jr. (1987). Postictal Capgras syndrome. Clin. Neurol. Neurosurg., 89(4), 271274. Retrieved from www.ncbi.nlm.nih.gov/pubmed/3690933CrossRefGoogle ScholarPubMed
Duque-Parra, J. E. (2004). Perspective on the vestibular cortex throughout history. Anat. Rec. B New Anat., 280, 1519. doi:10.1002/ar.b.20031CrossRefGoogle ScholarPubMed
Emami, S., Guimond, S., Chakravarty, M. M., and Lepage, M. (2016). Cortical thickness and low insight into symptoms in enduring schizophrenia. Schizophrenia Res., 170(1), 6672. doi:10.1016/j.schres.2015.10.016CrossRefGoogle ScholarPubMed
Farrer, C., Franck, N., Frith, C. D., Decety, J., and Jennerod, M. (2003). Modulating the experience of agency: A PET study. Neuroimage, 18, 324333. doi:10.1016/S1053-8119(02)00041–1CrossRefGoogle Scholar
Fitzgerald, P. B., Hoy, K., Daskalakis, Z. J., and Kulkarni, J. (2009). A randomized trial of the anti-depressant effects of low- and high-frequency transcranial magnetic stimulation in treatment-resistant depression. Depres. Anxiety, 26, 229234. doi:10.1002/da.20454CrossRefGoogle ScholarPubMed
Ford, J. M., Mathalon, D. H., Whitefield, S., Faustman, W. O., and Roth, W. T. (2002). Reduced communication between frontal and temporal lobes during talking in schizophrenia. Biol. Psychiatry, 51, 485492. doi:10.1016/S0006-3223(01)01335-XCrossRefGoogle Scholar
Freeman, T. W., Cardwell, D., Karson, C. N., and Komoroski, R. A. (1998). In vivo proton magnetic resonance spectroscopy of the medial temporal lobes of subjects with combat-related posttraumatic stress disorder. Magn. Reson. Med., 40(1), 6671. doi:10.1002/mrm.1910400110/pdfCrossRefGoogle ScholarPubMed
Fried, I. (1997). Auras and experiential responses arising in the temporal lobe. J. Neuropsychiatry Clin. Neurosci., 9, 420428. Retrieved from: http://neuro.psychiatryonline.org/doi/abs/10.1176/jnp.9.3.420Google ScholarPubMed
Frith, C. D. (2005). The neural basis of hallucinations and delusions. C.R. Biologies, 328, 169175. doi:10.1016/j.crvi.2004.10.012CrossRefGoogle ScholarPubMed
Frith, W. and Frith, C. D. (2003). Development and neurophysiology of mentalizing. Phil. Trans. R. Soc. Lond. B, 358, 459473. doi:10.1098/rstb.2002.1218CrossRefGoogle ScholarPubMed
Gaebler, A. J., Mathiak, K., Koten, J. W. Jr., König, A. A., Koush, Y., Weyer, D., Depner, C., Matentzoglu, S., Edgar, J. C., Willmes, K., and Zvyagintsev, M. (2015). Auditory mismatch impairments are characterized by core neural dysfunctions in schizophrenia. Brain, 138(5), 14101423. doi:10.1093/brain/awv049CrossRefGoogle Scholar
Gathers, A. D., Bhatt, R., Corbly, C. R., Farley, A. B., and Joseph, J. E. (2004). Developmental shifts in cortical loci for face and object recognition. Neuroreport, 15, 15491553. doi:10.1097/01.wnr.0000133299.84901.86CrossRefGoogle ScholarPubMed
Gauthier, I., Skudlarski, P., Gore, J. C., and Anderson, A. W. (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nat. Neurosci., 3, 191197. doi:org/10.1038/72140CrossRefGoogle ScholarPubMed
Gilbertson, M. W., Shenton, M. E., Ciszewski, A., Kasai, K., Lasko, N. B., Orr, S. P., and Pitman, R. K. (2002). Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat. Neurosci., 5, 12421247. doi:10.1038/nn958. PMCID: PMC2819093CrossRefGoogle ScholarPubMed
Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., and Mullins, P. G. (2014). The salience network is responsible for switching between the default mode network and the central executive network: Replication from DCM. Neuroimage, 99(1), 180190. doi:10.1016/j.neuroimage.2014.05.052CrossRefGoogle Scholar
Grover, S., Aneja, J., Mahajan, S., and Varma, S. (2014). Cotard’s syndrome: Two case reports and a brief review of literature. J. Neurosci. Rural Pract., 5(Suppl. 1), S59S62. doi:10.4103/0976–3147.145206CrossRefGoogle Scholar
Grüsser, O. J., Guldin, W. O., Mirring, S., and Salah-Eldin, A. (1994). Comparative physiological and anatomical studies of the primate vestibular cortex. In Albowitz, B., Albus, K., Kuhnt, U., Nothdurf, H. C., and Wahle, P. (Eds.), Structural and Functional Organization of the Neocortex. (pp. 358371) Berlin: Spinger-Verlag.Google Scholar
Harrison, N. A., Gray, M. A., Gianaros, P. J., and Critchley, H. D. (2010). The embodiment of emotional feelings in the brain. J. Neurosci., 30, 1287812884. doi:10.1523/JNEUROSCI.1725–10.2010CrossRefGoogle Scholar
Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., and Rafael, M. (2004). Intersubject synchronization of cortical activity during natural vision. Science, 303, 16341640. doi:10.1126/science.1089506CrossRefGoogle ScholarPubMed
Hickok, G. (2012). The cortical organization of speech processing: Feedback control and predictive coding the context of a dual-stream model. J. Commun. Dis., 45, 393402. doi:10.1016/j.jcomdis.2012.06.004CrossRefGoogle ScholarPubMed
Hickok, G., Costanzo, M., Capasso, R., and Miceli, G. (2011). The role of Broca’s area in speech perception: evidence from aphasia revisited. Brain Lang., 119(3), 214220. doi:10.1016/j.bandl.2011.08.001CrossRefGoogle ScholarPubMed
Hoffman, R. E., and McGlashan, T. H. (1997). Synaptic elimination, neurodevelopment, and the mechanism of hallucinated “voices” in schizophrenia. Am. J. Psychiatry, 154, 16831689. doi.org/10.1176/ajp.154.12.1683CrossRefGoogle Scholar
Hudson, A. J., and Grace, G. M. (2000). Misidentification syndromes related to face specific area in the fusiform gyrus. J. Neurol. Neurosurg. Psychiatry, 69(5), 645648. doi:10.1136/jnnp.69.5.645CrossRefGoogle ScholarPubMed
Jäncke, L., Hänggi, J., and Steinmetz, H. (2004). Morphological brain differences between adult stutterers and non-stutterers. BMC Neurol., 4, 18. doi:10.1186/1471–2377-4–23CrossRefGoogle ScholarPubMed
Just, M. A., Cherkassky, V. L., Keller, T. A., and Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: Evidence of underconnectivitiy. Brain, 127, 18111821. doi:10.1093/brain/awh199CrossRefGoogle Scholar
Kanwisher, N., McDermott, J., and Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. J. Neurosci., 17, 43024311. doi:10.1098/rstb.2006.1934Google ScholarPubMed
Kawaguchi, A., Nemoto, K., Nakaaki, S., Kawaguchi, T., Kan, H., Arai, N.,… Akechil, T. (2016). Insular volume reduction in patients with social anxiety disorder. Front. Psychiatry, 7, 3. doi:10.3389/fpsyt.2016.00003CrossRefGoogle ScholarPubMed
Klüver, H., and Bucy, P. C. 1939. Preliminary analysis of functions of the temporal lobes in monkeys. Arch. Neurol. Psychiatry, 42, 9791000. doi:10.1001/archneurpsyc.1939.02270240017001CrossRefGoogle Scholar
Kraepelin, E. 1919/1971. Dementia Praecox. Barclay, E., and Barclay, S. (trans.). New York, NY: Churchill Livingstone.Google Scholar
Kurth, F., Zilles, K., Fox, P. T., Laird, A. R., and Eickhoff, S. B. (2010). A link between the systems: Functional differentiation and integration within the human insula revealed by meta-analysis. Brain Struct. Funct., 214, 519534. doi:10.1007/s00429-010–0255-zCrossRefGoogle ScholarPubMed
Lehmann, C., Mueller, T., Federspiel, A., Hubl, D., Schroth, G., Huber, O.,… Dierks, T. (2004). Dissociation between overt and unconscious face processing in fusiform face area. Neuroimage, 21, 7583. doi:10.1016/j.neuroimage.2004.07.060CrossRefGoogle ScholarPubMed
Lenggenhager, B., Smith, S. T., and Blanke, O. (2006). Functional and neural mechanisms of embodiment: Importance of the vestibular system and the temporal parietal junction. Rev. Neurosci., 17, 643657. doi:10.1515/REVNEURO.2006.17.6.643CrossRefGoogle ScholarPubMed
Levy, F. (2007). Theories of autism. Aust. N. Z. J. Psychiatry, 41, 859868. doi:10.1002/aur.15CrossRefGoogle ScholarPubMed
Lipson, S. E., Sacks, O., and Devinsky, O. (2003) Selective emotional detachment from family after right temporal lobectomy. Epilepsy Behav. 4(3), 243342. doi.org/10.1016/S1525-5050(03)00081-7CrossRefGoogle ScholarPubMed
MacSweeney, M., Campbell, R., Woll, B., Giampietro, V., David, A. S., McGuire, P. K.,… Brammer, M. J. (2004). Dissociating linguistic and nonlinguistic gestural communication in the brain. Neuroimage, 22, 16051618. doi:10.1016/j.neuroimage.2004.03.015CrossRefGoogle Scholar
Maisog, J. M., Einbinder, E. R., Flowers, D. L., Turkeltaub, P. E., and Eden, G. F. (2008). A meta-analysis of functional neuroimaging studies of dyslexia. Ann. N.Y. Acad. Sci., 1145, 234259. doi:10.1196/annals.1416.024CrossRefGoogle ScholarPubMed
McCarley, R. W., Shenton, M. E., O’Donnell, B. F., and Nestor, P. G. 1993. Uniting Kraepelin and Bleuler: The psychology of schizophrenia and the biology of temporal lobe abnormalities. Harvard Rev. Psychiatry, 1, 3656. doi:10.3109/10673229309017055CrossRefGoogle ScholarPubMed
Meisenzahl, E. M., Koutxouleris, N., Gaser, C., Bottlender, R., Schmitt, G. J. E., McGuire, P., Decker, P., Burgermeister, B., Born, C., Reiser, M., and Moller, H-J. (2008). Structural brain alterations in subjects at high-risk of psychosis: A voxel-based morphometric study. Schizophr. Res., 102, 150162. doi:10.1016/j.schres.2008.02.023CrossRefGoogle ScholarPubMed
Mendez, M. F. (2001). Generalized auditory agnosia with spared music recognition in a left-hander. Analysis of a case with a right temporal stroke. Cortex, 37, 139150. doi:10.1016/S0010-9452(08)70563-XCrossRefGoogle Scholar
Mendez, M. F., and Cummings, J. L. (2003). Dementia: A Clinical Approach. (3rd edn.) New York, NY: Butterworth-Heineman.Google Scholar
Menon, V., and Uddin, L. Q. (2010). Saliency, switching, attention and control: A network model of insula function. Brain Struct. Funct., 214, 655667. doi:10.1007/s00429-010–0262-0CrossRefGoogle ScholarPubMed
Nagai, M., Kishi, K., and Kato, S. (2007). Insular cortex and neuropsychiatric disorders: A review of recent literature. Eur. Psychiatry, 22, 387394. doi:org/10.1016/j.eurpsy.2007.02.006CrossRefGoogle ScholarPubMed
Naqvi, N. H., Rudrauf, D., Damasio, H., and Bechara, A. (2007). Damage to the insular disrupts addiction to cigarette smoking. Science, 315, 531534. doi:10.1126/science.1135926CrossRefGoogle Scholar
Narumoto, J., Ikada, T., Sadato, N., Fukui, K. and Yonekura, Y. (2001). Attention to emotion modulates fMRI activity in human right superior temporal sulcus. Brain Res. Cogn. Brain Res., 12, 225231. doi:10.1016/S0926-6410(01)00053–2CrossRefGoogle ScholarPubMed
Nelson, E. E., Leibenluft, E., McClure, E. B., and Pine, D. S. (2005). The social re-orientation of adolescence: A neuroscience perspective on the process and its relation to psychopathology. Psychol. Med., 35, 163174. doi:10.1017/S0033291704003915CrossRefGoogle ScholarPubMed
Nordahl, C. W., Dierker, D., Mostafavi, I., Schumann, C. M., Rivera, S. M., Amaral, D. G., and Van Essen, D. C. (2007). Cortical folding abnormalities in autism revealed by surface-based morphometry. J. Neurosci., 27, 1172511735. doi:10.1523/JNEUROSCI.0777–07.2007CrossRefGoogle ScholarPubMed
Olson, I. R., Plotzker, A., and Ezzyat, Y. (2007). The enigmatic temporal pole: A review of findings on social and emotional processing. Brain, 130, 17181731. doi:10.1093/brain/awm052 1718–1731CrossRefGoogle ScholarPubMed
Palaniyappan, L., and Liddle, P. R. (2012). Does the salience network play a cardinal role in psychosis: An emerging hypothesis of insular dysfunction. J. Psychiatry Neurosci., 37(1), 1727. doi:10.1503/jpn.100176CrossRefGoogle ScholarPubMed
Pierce, K., Müller, R.-A., Ambrose, J., Allen, G., and Courchesne, E. (2001). Face processing occurs outside the fusiform “face area” in autism: Evidence from functional MRI. Brain, 124, 20592073. doi:10.1093/brain/124.10.2059 2059–2073CrossRefGoogle ScholarPubMed
Price, C. J. (2011). The anatomy of language: A review of 100 fMRI studies published in 2009. Ann. N.Y. Acad. Sci., 1191, 6288. doi:10.1111/j.1749–6632.2010.05444.xCrossRefGoogle ScholarPubMed
Redcay, E. (2008).The superior temporal sulcus performs a common function for social and speech perception: Implications for the emergence of autism. Neurosci. Biobehav. Rev., 32, 123142. doi:10.1016/j.neubiorev.2007.06.004CrossRefGoogle ScholarPubMed
Reiman, E. M., Raichle, M. E., Robins, E., Mintun, M. A., Fusselman, M. J., Fox, P. T.,… Hackman, K. A. (1989). Neuroanatomical correlates of a lactate-induced anxiety attack. Arch. Gen. Psychiatry, 46, 493500. doi:10.1001/archpsyc.1989.01810060013003CrossRefGoogle ScholarPubMed
Richlan, F., Kronbichler, M., and Wimmer, H. (2013). Structural abnormalities in the dyslexic brain: A meta-analysis of voxel-based morphometry studies. Hum. Brain Mapp., 34, 30553065. doi:10.1002/hbm.22127CrossRefGoogle ScholarPubMed
Righart, R., and de Gelder, B. (2007). Impaired face and body perception in developmental prosopagnosia. Proc. Nat. Acad. Sci. U.S.A., 104, 1723417238. doi:10.1073/pnas.0707753104CrossRefGoogle ScholarPubMed
Rincon, F., Dhamoon, M., Moon, Y., Paik, M. C., Boden-Albala, B., Homma, S.,… Elkind, M. S. V. (2008). Stroke location and association with fatal cardiac outcomes: Northern Manhattan Study (NOMAS). Stroke, 39, 24252431. doi:10.1161/STROKEAHA.107.506055CrossRefGoogle Scholar
Roper, S. N., Lévesque, M. F., Sutherling, W. W., and Engel, J. Jr. (1993). Surgical treatment of partial epilepsy arising from the insular cortex. J. Neurosurg., 79, 266269. Retrieved from: http://thejns.org/doi/pdf/10.3171/jns.1993.79.2.0266CrossRefGoogle ScholarPubMed
Ruby, P., and Decety, J. (2003). What you believe versus what you think they believe: A neuroimaging study of conceptual perspective-taking. Eur. J. Neurosci., 17, 24752480. doi:10.1046/j.1460–9568.2003.02673.xCrossRefGoogle ScholarPubMed
Sasiekaran, J., De Nil, L. F., Smyth, R., and Johnson, C. (2006). Phonological encoding in the silent speech of persons who stutter. J. Fluency Disord., 31, 121. doi:10.1016/j.jfludis.2005.11.005CrossRefGoogle Scholar
Saxe, R. and Wexler, A. (2005). Making sense of another mind: The role of the right temporo-parietal junction. Neuropsychologia, 43, 13911399. doi:10.1016/j.neuropsychologia.2005.02.013CrossRefGoogle ScholarPubMed
Scott, S. K., Blank, C., Rosen, S., and Wise, R. J. S. (2000). Identification of a pathway for intelligible speech in the left temporal lobe. Brain, 123, 24002406. doi:10.1093/brain/123.12.2400 2400–2406CrossRefGoogle ScholarPubMed
Selemon, L. D. (2013). A role for synaptic plasticity in the adolescent development of executive function, Transl. Psychiatry, 5(3), e238. doi:10.1038/tp.2013.7CrossRefGoogle Scholar
Seth, A. K., Suzuki, K., and Critchley, H. D. (2012). An interoceptive predictive coding model of conscious presence. Front. Psychol., 10:2:395. doi:10.3389/fpsyg.2011.00395Google Scholar
Shah, S. G., Klumpp, H., Angstadt, M., Nathan, P. J., and Phan, K. L. (2009). Amygdala and insula response to emotional images in patients with generalized social anxiety disorder. J. Psychiatry Neurosci., 34, 296302. doi:10.1017/S0033291714000567Google ScholarPubMed
Shapleske, J., Rossell, S. L., Woodruff, P. W., and David, A. S. (1999). The planum temporale: A systematic, quantitative review of its structural, functional and clinical significance. Brain Res. Rev., 29, 2649. doi:10.1016/S0165-0173(98)00047–2CrossRefGoogle ScholarPubMed
Shulman, G. I., Astafiev, S. V., McAvoy, M. P., d’Avossa, G., and Corbetta, M. (2007). Right TPJ deactivation during visual search functional significance and support for a filter hypothesis. Cerebral Cortex, 17, 26252633. doi:10.1093/cercor/bhl170CrossRefGoogle ScholarPubMed
Smith, M. (2005). Bilateral hippocampal volume reduction in adults with posttraumatic stress disorder: a meta-analysis of structural MRI studies. Hippocampus, 15, 798807. doi:10.1002/hipo.20102CrossRefGoogle ScholarPubMed
Specht, K. (2014). Neuronal basis of speech comprehension. Hear. Res., 307, 121135. doi:10.1016/j.heares.2013.09.011CrossRefGoogle ScholarPubMed
Suzuki, M., Yuasa, S., Minabe, Y., Murata, M., and Kurachi, M. (1993). Left superior temporal blood flow increases in schizophrenia and schizophreniform patients with auditory hallucination: A longitudinal case study using 123I-IMP SPECT. Eur. Arch. Psychiatry Clin. Neurosci., 242, 257261. doi:10.1007/BF02190383CrossRefGoogle ScholarPubMed
Tinaz, S., Malone, P., Hallett, M., and Horovitz, S. G. (2015). Role of the right dorsal anterior insula in the urge to tic in Tourette syndrome. Mov. Disord., 30(9), 11901197. doi:10.1002/mds.26230CrossRefGoogle ScholarPubMed
Uddin, L. Q., Kinnison, J., Pessoa, L., and Anderson, M. L. (2014). Beyond the tripartite cognition-emotion-interoception model of the human insular cortex. J. Cogn. Neurosci., 26, 1627. doi:10.1162/jocn_a_00462CrossRefGoogle ScholarPubMed
Uddin, L. Q., Molnar-Szakacs, I., Zaidel, E., and Iacoboni, M. (2006). rTMS to the right inferior parietal lobule disrupts self-other discrimination. Soc. Affective Cogn. Neurosci., 1, 6571. doi:10.1093/scan/nsl003CrossRefGoogle ScholarPubMed
Ungerleider, L. G., and Mishkin, M. (1982). Two cortical visual systems. In Ingle, D. J., Goodale, M. H., and Mansfield, R. J. W. (Eds.), The Analysis of Visual Behavior. Cambridge, MA: M.I.T. Press.Google Scholar
Van den Stock, J., van de Riet, W. A. C., Righart, R., and de Gelder, B. (2008). Neural correlates of perceiving emotional faces and bodies in developmental prosopagnosia: An event-related fMRI-study. PLoS One. 3(9), e3195. doi:10.1371/journal.pone.0003195CrossRefGoogle Scholar
Virtue, S., Haberman, J., Clancy, Z., Parrish, T., and Jung-Beeman, M. (2006). Neural activity of inferences during story comprehension. Brain Resh., 1084, 104114. doi:10.1016/j.brainres.2006.02.053CrossRefGoogle ScholarPubMed
Vollm, B. A., Taylor, A. N. W., Richardson, P., Rhiannon, C., Stirling, J., McKie, S.,… Elliott, R. (2006). Neuronal correlates of theory of mind and empathy: A functional magnetic resonance imaging study in a nonverbal task. Neuroimage, 29, 9098. doi:10.1016/j.neuroimage.2005.07.022CrossRefGoogle Scholar
Vuilleumier, P., Armong, J. L., Driver, J., and Dolan, R. J. (2001). Effects of attention and emotion of face processing in the human brain: An event-related fMRI study. Neuron, 30, 829841. doi:10.1016/S0896-6273(01)00328–2CrossRefGoogle Scholar
Watkins, K. E., Smith, S. M., Davis, S., and Howell, P. (2008). Structural and functional abnormalities of the motor system in developmental stuttering. Brain, 131, 5059. doi:10.1093/brain/awm241CrossRefGoogle ScholarPubMed
Woon, F. L., Sood, S., and Hedges, D. W. (2010). Hippocampal volume deficits associated with exposure to psychological trauma and posttraumatic stress disorder in adults: A meta-analysis. Prog Neuropsychopharmacol. Biol. Psychiatry, 34, 11811188. doi:10.1016/j.pnpbp.2010.06.016CrossRefGoogle ScholarPubMed
Young, A. W., Robinson, I. H., Hellavell, D. J., DePauw, K. E., and Pentland, B. (1992). Cotard delusion after brain injury (case study). Psychol. Med., 21, 799804. doi.org/10.1017/S003329170003823XCrossRefGoogle Scholar
Yovel, G., Tambini, A., and Brandman, T. (2008). The asymmetry of the fusiform face area is a stable individual characteristic that underlies the left-visual-field superiority for faces. Neuropsychologia, 46, 30613068. doi:10.1016/j.neuropsychologia.2008.06.017CrossRefGoogle ScholarPubMed
Zhan, Y., Paolicelli, R. C., Sforazzini, F., Weinhard, L., Bolasco, G., Pagani, F.,… Gross, C. T. (2014). Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci., 17, 400406. doi:10.1038/nn.3641CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×