Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-p6h7k Total loading time: 1.047 Render date: 2022-05-18T09:38:26.842Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Chapter 13 - Asymmetry and Interhemispheric Connections

Published online by Cambridge University Press:  22 February 2018

David L. Clark
Affiliation:
Ohio State University
Nash N. Boutros
Affiliation:
University of Missouri, Kansas City
Mario F. Mendez
Affiliation:
University of California, Los Angeles
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Brain and Behavior
An Introduction to Behavioral Neuroanatomy
, pp. 216 - 232
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brazis, P. W., Masdeu, J. C., and Biller, J. (1990). Localization in Clinical Neurology. Boston, MA: Little, Brown.Google Scholar
Davidson, R. J., and Hugdahl, K. (Eds.) 2003. Brain Asymmetry (electronic resource). Cambridge, MA: MIT Press.Google Scholar
Nass, R. D., and Gazzaniga, M. S. (1987). Cerebral lateralization and specialization in human central nervous system. In Plum, N., Plum, F., and Mountcastle, V. B. (Eds.), Handbook of Physiology – The Nervous System V. Bethesda, MD: American Physiological Society.Google Scholar
Paciaroni, M., Agnelli, G., Caso, V., and Bogousslavsky, J. (Eds.) (2012). Manifestations of stroke. Front. Neurol. Neurosci., Basal, Switzerland: Karger, vol. 30, 7074.Google Scholar
Toga, A. W., and Thompson, P. M. (2003). Mapping brain asymmetry. Nat. Rev. Neurosci. 4(1), 3748. doi:10.1038/nrn1009CrossRefGoogle ScholarPubMed
Trimble, M. R. (1988). Biological Psychiatry. New York. NY: Wiley.Google Scholar
Albin, R. L., and Mink, J. W. (2006). Recent advances in Tourette syndrome research. Trends Neurosci., 29, 175182. doi:10.1016/j.tins.2006.01.001CrossRefGoogle ScholarPubMed
Amone, D., Abou-Saleh, M. T., and Barrick, T. R. (2006). Diffusion tensor imaging of the corpus callosum in addiction. Neuropsychobiol., 52(2), 107113. doi:10.1159/000096992Google Scholar
Amunts, K., Schleicher, A., and Zilles, K. (2004). Outstanding language competence and cytoarchitecture in Broca’s speech region. Brain Language, 89, 346353. doi:10.1016/S0093-934X(03)00360–2CrossRefGoogle ScholarPubMed
Ardekani, B. A., Bachman, A. H., Figarsky, K., and Sidtis, J. J. (2015). Corpus callosum shape changes in early Alzheimer’s disease: An MRI study using the OASIS brain database. Brain Struct. Funct., 219(1). doi:10.1007/s00429-013–0503-0Google ScholarPubMed
Arditi, H., Feldman, R., Hammerman, C., and Eidelman, A. I. (2007). Cerebral blood flow velocity asymmetry, neurobehavioral maturation, and the cognitive development of premature infants across the first two years. J. Develop. Behav. Pediatrics, 28(5), 362368. doi:10.1097/DBP.0b013e318114315dCrossRefGoogle ScholarPubMed
Asbjørnsen, A. E., and Helland, T. (2006). Dichotic listening performance predicts language comprehension. Laterality Asymmetries Body Brain Cogn., 11, 251262. doi:10.1080/13576500500489360CrossRefGoogle ScholarPubMed
Baas, D., Aleman, A., and Kahn, R. S. (2004). Lateralization of amygdala activation: a systematic review of functional neuroimaging studies. Brain Res. Rev., 45, 96103. doi:10.1016/j.brainresrev.2004.02.004CrossRefGoogle ScholarPubMed
Baxter, L. R., Schwartz, J. M., Guze, B. H., Bergman, K., and Szuba, M. P. (1990). Neuroimaging in obsessive-compulsive disorder: Seeking the mediating neuroanatomy. In Jenike, M. A., Baer, L., and Minichiello, W. E. (Eds.), Obsessive-Compulsive Disorders: Theory and Management. (pp. 5177).Littleton, MA: Year Book Medical Publishers.Google Scholar
Bear, D. (1986). Hemispheric asymmetries in emotional function: a reflection of lateral specialization in cortical-limbic connections. In Doane, B. K. and Livingston, K. E. (Eds.), The Limbic System: Functional Organization and Clinical Disorders. (pp. 2942). New York, NY: Raven Press.Google Scholar
Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system – a technical review. N. M. R. Biomed., 15(7–8), 435455. doi:10.1002/nbm.782CrossRefGoogle ScholarPubMed
Berlucchi, G. (2004). Some effects of cortical and callosal damage on conscious and unconscious processing of visual information and other sensory inputs. Prog. Brain Resh. 144, 7993. doi:10.1016/S0079-6123(03)14405–6Google ScholarPubMed
Bhogal, S. K., Teasell, R., Foley, N., and Speechley, M. (2004). Lesion location and poststroke depression. Stroke, 35, 794802. doi:10.1161/01.STR.0000117237.98749.26CrossRefGoogle ScholarPubMed
Blonder, L. X., Bowers, D., and Heilman, K. M. (1991). The role of the right hemisphere in emotional communication. Brain, 114, 11151127. doi:10.1093/brain/114.3.1115CrossRefGoogle ScholarPubMed
Blonder, L., Burns, A., Bowers, D., Moore, R., and Heilman, K. (1993). Right hemisphere expressivity during natural conversation. Brain Cong., 24(1), 4446. doi:10.1006/brcg.1993.1003doi:10.1006/brcg.1993.1003CrossRefGoogle Scholar
Bogren, H. G., Buonocore, M. H., and Gu, W-Z. (1994). Carotid and vertebral artery blood flow in left- and right-handed healthy subjects measured with MR velocity mapping. J. Mag. Res. Imag., 4(1), 3742. Retrieved from www.ncbi.nlm.nih.gov/pubmed/8148554CrossRefGoogle ScholarPubMed
Boyce, W. T., Essex, M. J., Alkon, A., Smider, N. A., Pickrell, T., and Kagan, J. (2002). Temperament, tympanum, and temperature: Four provisional studies of the biobehavioral correlates of tympanic membrane temperature asymmetries. Child Dev., 73, 718733. doi:10.1111/1467–8624.00434CrossRefGoogle ScholarPubMed
Burgess, N., Maguire, E. A., and O’Keefe, J. (2002). The human hippocampus and spatial and episodic memory. Neuron, 35(4), 625641. doi:10.1016/S0896-6273(02)00830–9CrossRefGoogle ScholarPubMed
Cachia, A., Paillère-Martinot, M. L., Galinowski, A., Januel, D., de Beaurepaire, R., Bellivier, F.,… Martinot, J. L. (2008). Cortical folding abnormalities in schizophrenia patients with resistant auditory hallucinations. Neuroimage, 39, 927935. doi:10.1016/j.neuroimage.2007.08.049CrossRefGoogle ScholarPubMed
Caetano, S. C., Silveira, C. M., Kaur, S., Nicoletti, M., Hatch, J. P., Brambilla, P.,… Soares, J. C. (2008). Abnormal corpus callosum myelination in pediatric bipolar patients. J. Affect. Dis., 108(3), 297301. doi:10.1016/j.jad.2007.10.006CrossRefGoogle ScholarPubMed
Caglar, V., Alp, S. I., Demir, B. T., Sener, U., Ozen, O. A., and Alp, R. (2016). Planimetry investigation of the corpus callosum in temporal lobe epilepsy patients. Neurosci. (Riyadh), 21(2), 145150. doi:10.17712/nsj.2016.2.20150783CrossRefGoogle ScholarPubMed
Catani, M., Dell’Acqua, F., Budisavljevic, S., Howells, H., de Schotten, M. T., Froudist-Walsh, S.,… Murphy, D. G. M. (2016). Frontal networks in adults with autism spectrum disorder. Brain, 139(2), 616630. doi:10.1093/brain/awv351CrossRefGoogle ScholarPubMed
Cavanna, A. E., Stecco, A., Rickards, H., Servo, S., Terazzi, E., Peterson, G.Monaco, F. (2010). Corpus callosum abnormalities in Tourette syndrome: an MRI-DTI study of monozygotic twins. J. Neurol. Neurosurg. Psychiatry, 81(5), 533535. doi:10.1136/jnnp.2009.173666CrossRefGoogle ScholarPubMed
Ceccherini-Nelli, A., and Crow, T. J. (2003). Disintegration of the components of language as the path to a revision of Bleuler’s and Schneider’s concepts of schizophrenia: Linguistic disturbances compared with first-rank symptoms in acute psychosis. Br. J. Psychiatry, 182, 233240. doi:10.1192/bjp.182.3.233CrossRefGoogle Scholar
Chen, L., Hu, X., Ouyang, L., He, N., Liao, Y., Liu, Q.,… Gong, Q. (2016). A systematic review and meta-analysis of tract-based spatial statistics studies regarding attention-deficit/hyperactivity disorder. Neurosci. Biobehav. Rev., 68, 836847. doi:10.1016/j.neubiorev.2016.07.022CrossRefGoogle ScholarPubMed
Choi, H., Kubicki, M., Whitford, T., Alvarado, J. L., Terry, D. P., Niznikiewicz, M.,… Shenton, M. E. (2011). Diffusion tensor imaging of anterior commissural fibers in patients with schizophrenia. Schizophr. Res., 130, 7885. doi:10.1016/j.schres.2011.04.016CrossRefGoogle ScholarPubMed
Davidson, R. J. (2002). Anxiety and affective style: Role of prefrontal cortex and amygdala. Biol. Psychiatry, 51, 6880. doi:10.1016/S0006-3223(01)01328–2CrossRefGoogle ScholarPubMed
Davidson, R. J., and Rickman, M. (1999). Behavioral inhibition and the emotional circuitry of the brain: Stability and plasticity during the early childhood years. In Schmidt, L. A. and Schulkin, J. (Eds.), Extreme Fear, Shyness, and Social Phobia: Origins, Biological Mechanisms, and Clinical Outcomes (pp. 6787). New York, NY: Oxford University Press.CrossRefGoogle Scholar
Davidson, R. J., Shackman, A. J., and Maxwell, J. S. (2004). Asymmetries in face and brain related to emotion. Trends Cog. Sci. 8, 389391. doi:10.1016/j.tics.2004.07.006CrossRefGoogle ScholarPubMed
Diehl, B., Busch, R. M., Duncan, J. S., Piao, Z., Tkach, J., and Lüders, H. O. (2008) Abnormalities in diffusion tensor imaging of the uncinate fasciculus relate to reduced memory in temporal lobe epilepsy. Epilepsia, 49, 14091418. doi:10.1111/j.1528–1167.2008.01596CrossRefGoogle ScholarPubMed
Field, T., Diego, M., Hernandez-Reif, M., Schanberg, S., and Kuhn, C. (2002). Relative right versus left frontal EEG in neonates. Dev. Psychobiol., 41, 147155. doi:10.1002/dev.10061CrossRefGoogle ScholarPubMed
Firat, A., Tascioglu, A. B., Demiryurek, M. D., Saygi, S., Karli Oguz, K., Tezer, F. I., and Hayran, M. (2014). Evaluation of corpus callosum morphometry in patients with mesial temporal lobe epilepsy with hippocampal sclerosis. Surg. Radiol. Anat., 36(1), 4754. doi:10.1007/s00276-013–1144-yCrossRefGoogle ScholarPubMed
Fox, N. A., Henderson, H. A., Rubin, K. H., Calkins, S. D., and Schmidt, L. A. (2001). Continuity and discontinuity of behavioral inhibition and exuberance: psychophysiological and behavioral influences across the first four years of life. Child Dev., 72, 121. doi:10.1111/1467–8624.00262CrossRefGoogle ScholarPubMed
Frings, L., Wagner, K., Unterrainer, J., Spreer, J., Halsband, U., and Schulze-Bonhage, A. (2006). Gender-related differences in lateralization of hippocampal activation and cognitive strategy. Neuro Report, 17(4), 417421. doi:10.1097/01.wnr.0000203623.02082.e3Google ScholarPubMed
Friston, K. J. (2002). Dysfunctional connectivity in schizophrenia. World Psychiatry, 1(2), 6671. Retrieved from www.ncbi.nlm.nih.gov/pmc/articles/PMC1489874Google Scholar
Geary, E. K., Kraus, M. F., Pliskin, N. H., and Little, D. M. (2010). Verbal learning differences in chronic mild traumatic brain injury. J. Int. Neuropsychol. Soc., 16(3), 506516. doi:10.1017/S135561771000010XCrossRefGoogle ScholarPubMed
Geschwind, D. H., and Levitt, P. (2007). Autism spectrum disorders: Developmental disconnection syndromes. Curr. Opin. Neurobiol., 17, 103111. doi:10.1016/j.conb.2007.01.009CrossRefGoogle ScholarPubMed
Geschwind, N., and Galaburda, A. M. (1987). Cerebral lateralization. Biological mechanisms, associations, and pathology. Ann. Neurol., 22(4), 560. doi:10.1002/ana.410220434Google Scholar
Giovanello, K. S., Schnyer, D., and Verfaellie, M. (2009). Distinct hippocampal regions make unique contributions to relational memory. Hippocampus, 19(2), 111117. doi:10.1002/hipo.20491CrossRefGoogle ScholarPubMed
Gloor, P. (1990). Experimental phenomena of temporal lobe epilepsy: Facts and hypotheses. Brain, 113, 16731694. Retrieved from www.ncbi.nlm.nih.gov/pubmed/2276040CrossRefGoogle Scholar
Gregory, S., ffytche, D., Simmons, A., Kumari, V., Howard, M., Hodgins, S., and Blackwood, N. (2012). The antisocial brain: psychopathy matters. Arch. Gen. Psychiatry, 69, 962972. doi:10.1001/archgenpsychiatry.2012.222CrossRefGoogle ScholarPubMed
Hamberger, M. J., and Drake, E. B. (2006). Cognitive functioning following epilepsy surgery. Curr. Neurol. Neurosci. Rep., 6, 319326. doi:10.1007/s11910-006–0025-8CrossRefGoogle ScholarPubMed
Hamilton, L. S., Levitt, J. G., O’Neill, J., Alger, J. R., Luders, E., Phillipts, O. R.,… Narr, K. L. (2008). Reduced white matter integrity in attention-deficit hyperactivity disorder. Neuroreport, 19(17), 17051708. doi:10.1097/WNR.0b013e3283174415CrossRefGoogle ScholarPubMed
Harmon-Jones, E., Gable, P. A., and Peterson, C. K. (2010). The role of asymmetric frontal cortical activity in emotion-related phenomena: A review and update. Biol. Psychol., 84(3), 451462. doi:10.1016/j.biopsycho.2009.08.010CrossRefGoogle ScholarPubMed
Heilman, K. M., and Bowers, D. (1996). Emotional disorders associated with hemispheric dysfunction. In Fogel, B. S., Schiffer, R. B., and Rao, S. M. (Eds.), Neuropsychology (pp. 401406). Baltimore MD: Williams & Wilkins.Google ScholarPubMed
Hugdahl, K., Løberg, E. M., Jørgensen, H. A., Lundervold, A., Lund, A., Green, M. F., and Rund, B. (2008). Left hemisphere lateralisation of auditory hallucinations in schizophrenia: A dichotic listening study. Cogn. Neuropsychiatry, 13(2), 166179. doi:10.1080/13546800801906808CrossRefGoogle ScholarPubMed
Iglói, K., Doeller, C. F., Berthoz, A., Rondi-Reig, L., and Burgess, N. (2010). Lateralized human hippocampal activity predicts navigation based on sequence or place memory. Proc. Nat. Acad. Sci., U. S. A., 107(32), 1446614471. doi:10.1073/pnas.1004243107CrossRefGoogle ScholarPubMed
Jackson, D. C., Mueller, C. J., Dolski, I. V., Dalton, K. M., Nitschke, J. B., Urry, H. L.,… Davidson, R. J. (2003). Now you feel it, now you don’t: Frontal brain electrical asymmetry and individual differences in emotion regulation. Psychol. Sci., 14, 612617. doi:10.1046/j.0956–7976.2003.psci_1473.xCrossRefGoogle ScholarPubMed
Jalili, M., Meuli, R., Do, K. Q., Hasler, M., Crow, T. J., and Knyazeva, M. G. (2010). Attenuated asymmetry of functional connectivity in schizophrenia: a high-resolution EEG study. Psychophysiology, 47, 706716. doi:10.1111/j.1469–8986.2009.00971.xGoogle ScholarPubMed
Johnson, C. P., Juranek, J., Kramer, L. A., Prasad, M. R., Swank, P. R., and Ewing-Cobbs, L. (2011). Predicting behavioral deficits in pediatric traumatic brain injury through uncinate fasciculus integrity. J. Int. Neuropsychol. Soc., 17, 663673. doi:10.1017/S1355617711000464CrossRefGoogle ScholarPubMed
Johnson, S. H., and Grafton, S. T. (2003). From “acting on” to “acting with”: the functional anatomy of object-oriented action schemata. Prog. Brain Resh., 142, 127139. doi:10.1016/S0079-6123(03)42010–4CrossRefGoogle Scholar
Kalin, N. H., Larson, C., Shelton, S. E., and Davidson, R. J. (1998). Asymmetric frontal brain activity, cortisol, and behavior associated with fearful temperament in rhesus monkeys. Behav. Neurosci., 112, 286292. doi:10.1037//0735–7044.112.2.286CrossRefGoogle ScholarPubMed
Knecht, S., Deppe, M., Drager, B., Bobe, L., Lohmann, H., Ringelstein, E., and Henningsen, H. (2000). Language lateralization in healthy right-handers. Brain, 123, 7481. doi:10.1093/brain/123.1.74CrossRefGoogle ScholarPubMed
Knight, R. T. (1984). Decreased response to novel stimuli after prefrontal lesions in man. Electroencephalogr. Clin. Neurophysiol., 59, 920. Retrieved from www.ncbi.nlm.nih.gov/pubmed/6198170CrossRefGoogle ScholarPubMed
Kokkoroyannis, T., Scudder, C. A., Balaban, C. D., Highstein, S. M., and Moschovakis, A. K. (1996). Anatomy and physiology of the primate interstitial nucleus of Cajal: I Efferent projections. J. Neurophysiol., 75, 725739. Retrieved from www.ncbi.nlm.nih.gov/pubmed/8714648CrossRefGoogle ScholarPubMed
Krumbholz, K., Schönwiesner, M., Rübsamen, R., Zilles, K., Fink, G. R., and Cramon, von, D. Y. (2005). Hierarchical processing of sound location and motion in the human brainstem and planum temporale. Eur. J. Neurosci., 21, 230238. doi:10.1111/j.1460–9568.2004.03836.xCrossRefGoogle ScholarPubMed
Kulynych, J. J., Vladar, K., Jones, D. W., and Weinberger, D. R. (1994). Gender differences in the normal lateralization of the supratemporal cortex: MRI surface-rendering morphometry of Heschl’s gyrus and the planum temporale. Cerebral Cortex, 4, 107118. doi:10.1093/cercor/4.2.107CrossRefGoogle ScholarPubMed
Kumaran, D., and Magire, E. A. (2005). The human hippocampus: Cognitive maps or relational memory? J. Neurosci., 25(31), 72547259. doi:10.1523/JNEUROSCI.1103–05.2005CrossRefGoogle ScholarPubMed
Lai, C. H., and Wu, Y. T. (2013). Fronto-occipital fasciculus, corpus callosum and superior longitudinal fasciculus tract alterations of first-episode, medication-naïve and late-onset panic disorder patients. J. Affect. Disord., 146(3), 378382. doi:10.1016/j.jad.2012.09.022CrossRefGoogle ScholarPubMed
Lam, M., Collinson, S. L., Sim, K., Mackay, C. E., James, A. C., and Crow, T. J. (2012). Asymmetry of lexico-semantic processing in schizophrenia changes with disease progression. Schizophr. Res., 134, 125130. doi:10.1016/j.schres.2011.10.020CrossRefGoogle ScholarPubMed
LeMay, M. (1976). Morphological cerebral asymmetries of modern man, fossil man, and nonhuman primates. Ann. N. Y. Acad. Sci., 280, 349366. Retrieved from www.ncbi.nlm.nih.gov/pubmed/827951CrossRefGoogle Scholar
Liederman, J. (1995). A reinterpretation of the split-brain syndrome: Implications for the function of corticocortical fibers. In Davidson, R. J. and Hugdahl, K. (Eds.), Brain Asymmetry. (pp. 451490). Cambridge, MA: MIT Press.Google Scholar
Light, S. N., Coan, J. A., Zahn-Waxler, C., Frye, C., Goldsmith, H. H., and Davidson, R. J. (2009). Empathy is associated with dynamic change in prefrontal brain electrical activity during positive emotion in children. Child Develop., 80(4), 12101231. doi:10.1111/j.1467–8624.2009.01326.xCrossRefGoogle ScholarPubMed
Lin, F., Zhou, Y., Du, Y., Qin, L., Zhao, Z., Xu, J., and Lei, H. (2012). Abnormal white matter integrity in adolescents with internet addiction disorder: A tract-based spatial statistics study. PLos ONE, doi:10.1371/journal.pone.0030253CrossRef
Liu, T-Y., Chen, Y-S., Hsieh, J-C., and Chen, L-F. (2015). Asymmetric engagement of amygdala and its gamma connectivity in early emotional face processing. PLos ONE, 10(1), e0115677. doi:10.1371/journal.pone.0115677CrossRefGoogle ScholarPubMed
Lunders, E., Narr, K. L., Hamilton, L. S., Phillips, O. R., Thompson, P. M., Valle, J. S.,… Levitt, J. G. (2009). Decreased callosal thickness in attention-deficit/hyperactivity disorder. Biol. Psychiatry, 65, 8488. doi:10.1016/j.biopsych.2008.08.027CrossRefGoogle Scholar
Maguire, E. A., and Frith, C. D. (2003). Lateral asymmetry in the hippocampal response to the remoteness of autobiographical memories. J. Neurosci., 23(12), 53025307. doi:10.3410/f.1014302.193302Google ScholarPubMed
Mandal, M. K. and Ambady, N. (2004). Laterality of facial expressions of emotion: universal and culture-specific influences. Behav. Neurol., 15, 2334. doi:10.1155/2004/786529CrossRefGoogle ScholarPubMed
Mandl, R. C. W., Rais, M., van Baal, G. C. M., van Haren, N. E. M., Cahn, W., Kahn, R. S., and Holshoff Pol, H. E. (2012). Altered white matter connectivity in never-medicated patients with schizophrenia. Hum. Brain Mapp., 34(9), 23532365. doi: 10.1002/hbm.22075Google Scholar
McMenamin, B. W., and Marsolek, C. J. (2013). Can theories of visual representation help to explain asymmetries in amygdala function? Cogn. Affect. Behav. Neurosci., 13(2), 211224. doi:10.3758/s13415-012–0139-1CrossRefGoogle ScholarPubMed
Mendez, M. F., (1995). The neuropsychiatry of multiple sclerosis. Int. J. Psychiatry Med., 25, 123135. doi:10.3109/09540261003589323CrossRefGoogle ScholarPubMed
Mendez, M. F. and Cherrier, M. M. (2003). Agnosia for scenes in topographagnosia. Neuropsychologia, 41(10), 13871395. doi:10.1016/S0028-3932(03)00041–1CrossRefGoogle ScholarPubMed
Moeller, F. G., Hasan, K. M., Steinberg, J. L., Kramer, L. A., Dougherty, D. M., Santos, R. M.,… Narayana, P. A. (2005) Reduced anterior corpus callosum white matter integrity is related to increased impulsivity and reduced discriminability in cocaine-dependent subjects: Diffusion tensor imaging. Neuropsychopharmacology, 30, 610617. doi:10.1038/sj.npp.1300617CrossRefGoogle ScholarPubMed
Moeller, F. G., Steinberg, J. L., Lane, S. D., Buzby, M., Swann, A. C., Hasan, K. M.Narayana, P. A. (2007). Diffusion tensor imaging in MDMA users and controls: association with decision making. Am. J. Drug Alcohol Abuse, 33, 777789. doi:10.1080/00952990701651564CrossRefGoogle ScholarPubMed
Morosan, D., Rademacher, J., Schleicher, A., Amunts, K., Schormann, T., and Zilles, K. (2001). Human primary auditory cortex: cytoarchitectonic subdivisions and mapping into a spatial reference system. Neuroimage, 13, 684701. doi:10.1523/JNEUROSCI.2000–11.2011CrossRefGoogle ScholarPubMed
Mottaghy, F. M., Keller, C. E., Gangitano, M., Ly, J., Thall, M., Parker, J. A., and Pascual-Leone, A. (2002). Correlation of cerebral blood flow and treatment effects of repetitive transcranial magnetic stimulation in depressed patients. Psychiatry Res., 115, 114. doi:10.1016/S0925-4927(02)00032-XCrossRefGoogle ScholarPubMed
Motzkin, J. C., Newman, J. P., Kiehl, K. A., and Koenigs, M. (2011). Reduced prefrontal connectivity in psychopathy. J. Neurosci., 31, 1734817357. doi:10.1523/JNEUROSCI.4215–11.2011CrossRefGoogle ScholarPubMed
Narayana, P. A., Herrera, J. J., Bockhorst, K. H., Esparza-Coss, E., Xia, Y., Steinberg, L., and Moeller, F. G. (2014). Chronic cocaine administration causes extensive white matter damage in brain: Diffusion tensor imaging and immunohistochemistry studies. Psychiatry Res. Neuroimag., 221(3), 220230. doi:10.1016/j.pscychresns.2014.01.005CrossRefGoogle ScholarPubMed
Narushima, K., Kosier, J. T., and Robinson, R. G. (2003). A reappraisal of poststroke depression, intra- and inter-hemispheric lesion location using meta-analysis. J. Neuropsychiatry Clin. Neurosci., 15, 422430. doi:10.1176/jnp.15.4.422CrossRefGoogle ScholarPubMed
Naveteur, J., Roy, J. C., Ovelac, E., and Steinlin, M. (1992). Anxiety, emotion and cerebral blood flow. Int. J. Psychophysiol., 13, 137146. Retrieved from www.ncbi.nlm.nih.gov/pubmed/1399753CrossRefGoogle ScholarPubMed
Nicholls, M. E., Orr, C. A., and Lindell, A. K. (2005). Magical ideation and its relation to lateral preference. Laterality, 10(6), 503515. doi:10.1080/13576500442000265CrossRefGoogle ScholarPubMed
Nishikawa, T., Okuda, J., Mizuta, I., Ohno, K., Jamshidi, J.,Tokunaga, H.Takeda, M. (2001). Conflict of intentions due to callosal disconnection. J. Neurol. Neurosurg. Psychiatry, 71(4), 462471. doi:10.1136/jnnp.71.4.462CrossRefGoogle ScholarPubMed
Onnink, A. M. H., Zwiers, M. P., Hoogman, M., Mostert, J. C., Dammers, J.,… Franke, B. (2015). Deviant white matter structure in adults with attention-deficit/hyperactivity disorder points to aberrant myelination and affects neuropsychological performance. Prog. Neuropsychopharmacol. Biol. Psychiatry, 63, 1422. doi:10.1016/j.pnpbp.2015.04.008CrossRefGoogle ScholarPubMed
Palaniyappan, L., and Liddle, P. F. (2012). Aberrant cortical gyrification in schizophrenia: a surface-based morphometry study. J. Psychiatry Neurosci., 37, 399406. doi:10.1503/jpn.110119CrossRefGoogle ScholarPubMed
Papanicolaou, A. C., Rezaie, R., Narayana, S., Choudhri, A. F., Wheless, J. W., Castillo, E. M.,… Boop, F. A. (2014). Is it time to replace the Wada test and put awake craniotomy to sleep? Epilepsia, 55(5), 629632. doi:10.1111/epi.12569CrossRefGoogle ScholarPubMed
Papez, J. W. 1937. A proposed mechanism of emotion. Arch. Neurol. Psychiat., 38, 725743. doi:10.1001/archneurpsyc.1937.02260220069003CrossRefGoogle Scholar
Parikshak, N. N., Luo, R., Zhang, A., Won, H., Lowe, J. K., Chandran, V.,… Geschwind, D. H. (2013). Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism. Cell, 155, 10081021. doi:10.1016/j.cell.2013.10.031CrossRefGoogle ScholarPubMed
Paul, L. K., Corsello, C., Kennedy, D. P., and Adolphs, R. (2014). Agenesis of the corpus callosum and autism: a comprehensive comparison. Brain, 137(6), 18131829. doi:10.1093/brain/awu070CrossRefGoogle ScholarPubMed
Pedraza, O., Bowers, D., and Gilmore, R. (2004) Asymmetry of the hippocampus and amygdala in MRI volumetric measurements of normal adults. J. Int. Neuropsychol. Soc., 10, 664678. doi:10.1017/S1355617704105080CrossRefGoogle ScholarPubMed
Peretz, I., and Hyde, K. L. (2003). What is specific to music processing? Insights from congenital amusia. Trends Cog. Sci., 7(8), 362367. doi:10.1016/S1364-6613(03)00150–5CrossRefGoogle ScholarPubMed
Peru, A., Beltramello, A., Moro, V., Sattibaldi, L., and Berlucchi, G. (2003). Temporal and permanent signs of interhemispheric disconnection after traumatic brain injury. Neuropsychologia, 41, 634643. doi:10.1016/S0028-3932(02)00203–8CrossRefGoogle Scholar
Plessen, K. J., Wentzel-Larsen, T., Hugdahl, K., Feineigle, P., Klein, J., Staib., L. H…. Peterson, B. S. (2004). Altered interhemispheric connectivity in individuals with Tourette’s disorder. Am. J. Psychiatry, 161, 20282037. doi:10.1176/appi.ajp.161.11.2028CrossRefGoogle ScholarPubMed
Poeppel, D. (2003). The analysis of speech in different temporal integration windows: Cerebral lateralization as “asymmetric sampling in time.” Speech Commun., 41, 245255. doi:10.1016/S0167-6393(02)00107–3CrossRefGoogle Scholar
Pulvermüller, F., and Fadiga, L. (2010). Active perception: sensorimotor circuits as a cortical basis for language. Nat. Rev. Neurosci., 11, 351360. doi:10.1038/nrn2811CrossRefGoogle ScholarPubMed
Raine, A., Lencz, T., Bihrle, S., LaCasse, L., and Colletti, P. (2000). Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Arch. Gen. Psychiatry, 57, 119127. doi:10.1001/archpsyc.57.2.119CrossRefGoogle ScholarPubMed
Rajah, M. N., Kromas, M., Han, J. E., and Pruessner, J. C. (2010). Group differences in anterior hippocampal volume and in the retrieval of spatial and temporal context memory in healthy young versus older adults. Neuropsychologia, 48(14), 40204030. doi:10.1016/j.neuropsychologia.2010.10.010.CrossRefGoogle ScholarPubMed
Reitz, C., Brickman, A. M., Brown, T. R., Manly, J., DeCarli, C., Small, S. A., and Mayeux, R. (2009). Linking hippocampal structure and function to memory performance in an aging population. Arch. Neurology, 66(11), 13851392. doi:10.1001/archneurol.2009.214CrossRefGoogle Scholar
Riley, J. D., Franklin, D. L., Choi, V., Kim, R. C., Binder, D. K., Cramer, S. C., and Lin, J. J. (2010). Altered white matter integrity in temporal lobe epilepsy: Association with cognitive and clinical profiles. Epilepsia, 51, 536545. doi:10.1111/j.1528–1167.2009.02508.xCrossRefGoogle ScholarPubMed
Robinson, R. G. (1985). Lateralized behavioral and neurochemical consequences of unilateral brain injury in rats. In Glick, S. D. (Ed.), Cerebral Lateralization in Nonhuman Species. (pp. 135156). New York, NY: Academic Press.CrossRefGoogle Scholar
Robinson, R. G., and Jorge, R. E. (2016). Poststroke depression: A review. Am. J. Psychiatry, 173(3), 221231. doi:10.1176/appi.ajp.2015.15030363CrossRefGoogle ScholarPubMed
Saar-Ashkenazy, R., Cohen, J. E., Guez, J., Gasho, C., Shelef, I., Friedman, A., and Shalev, H. (2014). Reduced corpus-callosum volume in posttraumatic stress disorder highlights the importance of interhemispheric connectivity for associative memory. J. Trauma Stress, 27(1), 1826. doi:10.1002/jts.21887CrossRefGoogle ScholarPubMed
Salo, R., Nordahl, T. E., Buonocore, M. H., Natsuaki, Y., Waters, C., Moore, C. D.Leamon, M. H. (2009) Cognitive control and white matter callosal microstructure in methamphetamine-dependent subjects: a diffusion tensor imaging study. Biol. Psychiatry, 65, 122128. doi:10.1016/j.biopsych.2008.08.004CrossRefGoogle ScholarPubMed
Santos Sequeira, D. S., Woerner, W., Walter, C., Kreuder, F., Lueken, U., Westerhausen, R.,… Wittling, W. (2006). Handedness, dichotic-listening ear advantage, and gender effects on planum temporale asymmetry – a volumetric investigation using structural magnetic resonance imaging. Neuropsychologia, 44, 622636. doi:10.1016/01664328(94)90127–9CrossRefGoogle ScholarPubMed
Saxena, K., Tamm, L., Walley, A., Simmons, A., Rollins, N., Chia, J.Huang, H. (2012). A preliminary investigation of corpus callosum and anterior commissure aberrations in aggressive youth with bipolar disorders. J. Child Adolescent Psychopharmacol., 22(2), 112119. doi:10.1089/cap.2011.0063CrossRefGoogle ScholarPubMed
Schweren, L. J. S., de Zeeuw, P., and Durston, S. (2013). MR imaging of the effects of methylphenidate on brain structure and function in attention-deficit/hyperactivity disorder. Eur. Neuropsychopharmacol., 23, 11511164. doi:10.1016/j.euroneuro.2012.10.014CrossRefGoogle ScholarPubMed
Seidman, L. J., Valera, E. M., and Makris, N. (2005). Structural brain imaging of attention-deficit/hyperactivity disorder. Biol. Psychiatry, 57, 12631272. doi:10.1016/j.biopsych.2004.11.019CrossRefGoogle ScholarPubMed
Sergent, J. 1995. Hemispheric contribution to face processing: Patterns of convergence and divergence. In Davidson, R. J. and Hugdahl, K. (Eds.), Brain Asymmetry (pp. 157181). Cambridge, MA: MIT Press.Google Scholar
Shenton, M. E., Dickey, C. C., Frumin, M., and McCarley, R. W. (2001). A review of MRI findings in schizophrenia. Schizophr. Res., 49, 152. Retrieved from www.ncbi.nlm.nih.gov/pubmed/11343862CrossRefGoogle Scholar
Sherwin, I. (1982). The effect of the location of an epileptogenic lesion on the occurrence of psychosis in epilepsy. In Koella, W. and Trimble, M. R. (Eds.), Temporal Lobe Epilepsy, Mania, and Schizophrenia and the Limbic System (pp. 8197). Basel, SUI: Karger.Google Scholar
Sherwin, I., Peron-Magnan, P., Bancaud, J., Bonis, A., and Talairach, J. (1982). Prevalence of psychosis in epilepsy as a function of the laterality of the epileptogenic lesion. Arch. Neurol., 39, 621625. doi:10.1001/archneur.1982.00510220019004CrossRefGoogle ScholarPubMed
Sperry, R. (1962). Some general aspects of interhemispheric integration. In Mountcastle, V. B. (Ed.), Interhemispheric Relations and Cerebral Dominance (pp. 4349). Baltimore, MD: Johns Hopkins Press.Google Scholar
Spiers, H. J., Maguire, E. A., and Burgess, N. (2001). Hippocampal amnesia. Neurocase, 7, 357382. doi:10.1076/neur.7.5.357.16245CrossRefGoogle ScholarPubMed
Starkstein, S. E., Cohen, B. S., Fedoroff, P., Parikh, R. M., Price, T. R., and Robinson, R. G. (1990). Relationship between anxiety disorders and depressive disorders in patients with cerebrovascular injury. Arch. Gen. Psychiatry, 47, 246251. doi:10.1001/archpsyc.1990.01810150046008CrossRefGoogle ScholarPubMed
Stoléru, S., Fonteille, V., Cornélis, C., Joyal, C., and Moulier, V. (2012). Functional neuroimaging studies of sexual arousal and orgasm in healthy men and women: A review and meta-analysis. Neurosci. Biobehav. Rev., 36(6), 14811509. doi:10.1016/j.neubiorev.2012.03.006CrossRefGoogle ScholarPubMed
Strawn, J. R., Bitter, S. M., Weber, W. A., Chu, W. J., Whitsel, R. M.,… DelBello, M. P. (2012). Neurocircuitry of generalized anxiety disorder in adolescents: A pilot functional neuroimaging and functional connectivity study. Depress. Anxiety, 29, 939947. doi:10.1002/da.21961CrossRefGoogle ScholarPubMed
Sumich, A., Chitnis, X. A., Fannon, D. G., O’Ceallaigh, S., Doku, V. C., Faldrowicz, A., and Sharma, T. (2005). Unreality symptoms and volumetric measures of Heschl’s gyrus and planum temporal in first-episode psychosis. Biol. Psychiatry, 57, 947950. doi:10.1016/j.biopsych.2004.12.041CrossRefGoogle ScholarPubMed
Sun, W., and May, P. J. (2014). Central pupillary light reflex circuits in the cat: I The olivary pretectal nucleus. J. Comp. Neurol., 522(18), 29603977. doi:10.1002/cne.23602CrossRefGoogle ScholarPubMed
Sundram, F., Deeley, Q., Sarkar, S., Daly, E., Latham, R., Craig, M.,… Murphy, D. G. (2012). White matter microstructural abnormalities in the frontal lobe of adults with antisocial personality disorder. Cortex, 48, 216229. doi:10.1016/j.cortex.2011.06.005CrossRefGoogle ScholarPubMed
Thiel, C. M., and Schwarting, R. K. (2001). Dopaminergic lateralisation in the forebrain: relations to behavioural asymmetries and anxiety in male Wistar rats. Neuropsychobiol., 43(3), 192199. doi.org/10.1159/000054889CrossRefGoogle ScholarPubMed
Trevarthen, C. (1990). Growth and education in the hemispheres. In Trevarthen, C. (Ed.), Brain Circuits and Functions of the Mind (pp. 334363). Cambridge, UK: Cambridge University Press.Google Scholar
Villarreal, G., Hamilton, D. A., Graham, D. P., Driscoll, I., Qualls, C., Petropoulos, H., and Brooks, W. M. (2004). Reduced area of the corpus callosum in posttraumatic stress disorder. Psychiatry Res., 131(3), 227235. doi:10.1016/j.pscychresns.2004.05.002CrossRefGoogle ScholarPubMed
Von Der Heide, R. J., Skipper, L. M., Klobusicky, E., and Olson, I. R. (2013). Dissecting the uncinate fasciculus: Disorders, controversies and a hypothesis. Brain, 136(6), 16921707. doi:10.1093/brain/awt094CrossRefGoogle Scholar
Wang, W., Qian, S., Liu, K., Li, B., Li, M.,… Sun, G. (2016). Reduced white matter integrity and its correlation with clinical symptom in first-episode, treatment-naïve generalized anxiety disorder. Behav. Brain Res., 314, 159164. doi:10.1016/j.bbr.2016.08.017CrossRefGoogle ScholarPubMed
Winter, T. J., and Franz, E. A. (2014). Implication of the anterior commissure in the allocation of attention to action. Front. Psychol., 5. 432. doi.org/10.3389/fpsyg.2014.00432CrossRefGoogle Scholar
Womer, F. Y., Kalmar, J. H., Wang, F., and Blumberg, H. P. (2009). A ventral prefrontal-amygdala neural system in bipolar disorder: A view from neuroimaging research. Acta Neuropsychiatr., 21, 228238. doi:10.1111/j.1601–5215.2009.00414.xCrossRefGoogle ScholarPubMed
Woolard, A. A., and Heckers, S. (2012) Anatomical and functional correlates of human hippocampal volume asymmetry. Psychiatry Res., 201, 4853. doi:10.1016/j.pscychresns.2011.07.016CrossRefGoogle ScholarPubMed
Wylie, K. P., and Tregellas, J. R. (2010). The role of the insula in schizophrenia. Schizophr. Res., 123(2–3), 93104. doi:10.1016/j.schres.2010.08.027CrossRefGoogle Scholar
Yank, M., Yazgan, B. P., Wexler, B. E., and Leckman, J. F. (1995). Behavioral laterality in individuals with Gilles de la Tourette Syndrome and basal ganglia alterations: A preliminary report. Biol. Psychiatry, 38, 386390. doi:10.1016/0006–3223(94)00302-J.Google Scholar
Zaidel, E. (1995). Interhemispheric transfer in the split brain: Long-term status following complete cerebral commissurotomy. In Davidson, R. J. and Hugdahl, K. (Eds.) Brain Asymmetry (pp. 491532). Cambridge, MA: MIT Press,Google Scholar
Zhu, M., Gao, Wenpeng, Wang, X., Shi, C., and Lin, Z. (2012). Progression of corpus callosum atrophy in early stage of Alzheimer’s disease: MRI based study. Acad. Raiol., 19(5), 512517. doi:10.1016/j.acra.2012.01.006CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×