Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-14T04:44:56.017Z Has data issue: false hasContentIssue false

Part III - Contemporary Perspectives

Published online by Cambridge University Press:  31 March 2023

Michaela Binder
Affiliation:
Novetus GmbH Archaeological Services
Charlotte A. Roberts
Affiliation:
Durham University
Daniel Antoine
Affiliation:
British Museum, London
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ababneh, B., Rejjal, L., Pokharel, Y., et al. (2014). Distribution of calcification in carotid endarterectomy tissues: comparison of micro-computed tomography imaging with histology. Vascular Medicine, 19, 343–50.CrossRefGoogle ScholarPubMed
Abboud, I. A. (2008). Mineralogy and chemistry of urinary stones: Patients from North Jordan. Environmental Geochemistry and Health, 30, 445–63.CrossRefGoogle ScholarPubMed
Armentano, N., Subirana, M., Isidro, A., Escala, O. and Malgosa, A. (2012). An ovarian teratoma of late Roman age. International Journal of Paleopathology, 2, 236–9.CrossRefGoogle ScholarPubMed
Aufderheide, A. C. and Rodríguez-Martín, C. (1998). The Cambridge Encyclopedia of Human Paleopathology. Cambridge: Cambridge University Press.Google Scholar
Baud, C.-A. and Kramar, C. (1991). Soft tissue calcifications in paleopathology. In Ortner, D. J. and Aufderheide, A. C., eds., Human Paleopathology: Current Syntheses and Future Options. Washington, DC: Smithsonian Institution Press, pp. 257–60.Google Scholar
Becker, C. R., Nikolaou, K., Muders, M., et al. (2003). Ex vivo coronary atherosclerotic plaque characterization with multi-detector-row CT. European Radiology, 13, 2094–8.CrossRefGoogle ScholarPubMed
Biehler-Gomez, L., Cappella, A., Castoldi, E., Martrille, L. and Cattaneo, C. (2018a). Survival of atherosclerotic calcifications in skeletonized material: Forensic and pathological implications. Journal of Forensic Sciences, 63, 386–94.CrossRefGoogle ScholarPubMed
Biehler-Gomez, L., Maderna, E., Brescia, G., et al. (2018b). Distinguishing atherosclerotic calcifications in dry bone: implications for forensic identification. Journal of Forensic Sciences, 64, 839–44.Google ScholarPubMed
Biehler-Gomez, L., Maderna, E., Brescia, G., et al. (2019). ‘Aged’ autopsy gallstones simulating dry bone context: a morphological, histological and SEM-EDS analysis. International Journal of Paleopathology, 24, 60–5.CrossRefGoogle ScholarPubMed
Binder, M. and Roberts, C. A. (2014). Calcified structures associated with human skeletal remains: Possible atherosclerosis affecting the population buried at Amara West, Sudan (1300–800 BC). International Journal of Paleopathology, 6, 20–9.CrossRefGoogle Scholar
Cattaneo, C., Mazzarelli, D., Cappella, A., et al. (2018). A modern documented Italian identified skeletal collection of 2127 skeletons: The CAL Milano Cemetery Skeletal Collection. Forensic Science International, 287, 219.e1–e5.CrossRefGoogle ScholarPubMed
Charatsi, D. I., Kotsopoulos, I. C., Xirou, P., Valeri, R. M. and Kaplanis, K. (2015). Synchronous adenocarcinoma and echinococcosis in the same ovary: A rare clinical entity. Hippokratia, 19, 88.Google ScholarPubMed
Charlier, P., Wils, P., Froment, A. and Huynh-Charlier, I. (2014). Arterial calcifications from mummified materials: Use of micro-CT-scan for histological differential diagnosis. Forensic Science, Medicine and Pathology, 10, 461–5.CrossRefGoogle ScholarPubMed
Cunha, E. (2006). Pathology as a factor of personal identity in forensic anthropology. In Schmitt, A., Cunha, E. and Pinheiro, J., eds., Forensic Anthropology and Medicine. Totowa, NJ: Humana Press, pp. 333–58.Google Scholar
Curtze, S. C., Kratz, M., Steinert, M. and Vogt, S. (2016). Step down vascular calcification analysis using state-of-the-art nanoanalysis techniques. Scientific Reports, 6, 23285.CrossRefGoogle ScholarPubMed
Das, D. K. (2009). Psammoma body: A product of dystrophic calcification or of a biologically active process that aims at limiting the growth and spread of tumor? Diagnostic Cytopathology, 37, 534–41.CrossRefGoogle ScholarPubMed
Decreto di Polizia Mortuaria. (1990). Decreto del Presidente della Repubblica, n. 285, 10 settembre 1990. Regolamento di Polizia Mortuaria. https://presidenza.governo.it/USRI/ufficio_studi/normativa/D.P.R.%2010%20settembre%201990,%20n.%20285.pdfGoogle Scholar
Demer, L. L. and Tintut, Y. (2008). Vascular calcification: Pathobiology of a multifaceted disease. Circulation, 117, 2938–48.CrossRefGoogle ScholarPubMed
DiMaio, V. J. M. and Francis, J. R. (2001). Heterotopic ossification in unidentified skeletal remains. American Journal of Forensic Medicine and Pathology, 22, 160–4.CrossRefGoogle ScholarPubMed
Doherty, T. M., Asotra, K., Fitzpatrick, L. A., et al. (2003). Calcification in atherosclerosis: Bone biology and chronic inflammation at the arterial crossroads. Proceedings of the National Academy of Sciences USA, 100(20), 11201–6.CrossRefGoogle ScholarPubMed
Falk, E. (2006). Pathogenesis of atherosclerosis. Journal of the American College of Cardiology, 47(8 Suppl), C7C12.CrossRefGoogle ScholarPubMed
Fayad, Z. A. and Fuster, V. (2001). Clinical imaging of the high-risk or vulnerable atherosclerotic plaque. Circulation Research, 89, 305–16.CrossRefGoogle ScholarPubMed
Gaeta, R., Fornaciari, A., Izzetti, R., Caramella, D. and Giuffra, V. (2019). Severe atherosclerosis in the natural mummy of Girolamo Macchi (1648–1734), ‘major writer’ of Santa Maria della Scala Hospital in Siena (Italy). Atherosclerosis, 280, 6674.CrossRefGoogle Scholar
Glass, C. K. and Witztum, J. L. (2001). Atherosclerosis: The road ahead. Cell, 104, 503–16.CrossRefGoogle ScholarPubMed
Gouvêa Lima, G. de M., Moraes, R. M., Cavalcante, A. S. R., Carvalho, Y. R. and Anbinder, A. L. (2015). An isolated phlebolith on the lip: An unusual case and review of the literature. Case Reports in Pathology, 2015, 507840.CrossRefGoogle ScholarPubMed
Jang, I.-K., Bouma, B. E., Kang, D.-H., et al. (2002). Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound. Journal of the American College of Cardiology, 39, 604–9.CrossRefGoogle ScholarPubMed
Kim, I. S., Myung, S. J., Lee, S. S., Lee, S. K. and Kim, M. H. (2003). Classification and nomenclature of gallstones revisited. Yonsei Medical Journal, 44, 561–70.Google ScholarPubMed
Kim, M. J., Kim, Y. S., Oh, C. S., et al. (2015). Anatomical confirmation of computed tomography-based diagnosis of the atherosclerosis discovered in seventeenth century Korean mummy. PLoS One, 10, e0119474.CrossRefGoogle Scholar
Komar, D. A. and Buikstra, J. E. (2003). Differential diagnosis of a prehistoric biological object from the Koster (Illinois) Site. International Journal of Osteoarchaeology, 13, 157–64.CrossRefGoogle Scholar
Libby, P. (2003). Vascular biology of atherosclerosis: Overview and state of the art. American Journal of Cardiology, 91(3A), 3A6A.CrossRefGoogle ScholarPubMed
Libby, P., Ridker, P. M. and Hansson, G. K. (2011). Progress and challenges in translating the biology of atherosclerosis. Nature, 473, 317–25.CrossRefGoogle ScholarPubMed
Lusis, A. J. (2000). Atherosclerosis. Nature, 407, 233–41.CrossRefGoogle ScholarPubMed
Mönckeberg, J. G. (1903). Über die reine Mediaverkalkung der Extremitätenarterien und ihr Verhalten zur Arteriosklerose. Virchows Archiv für pathologische Anatomie und Physiologie und für klinische Medizin, 171, 141–67.Google Scholar
Özdemir, K., Akyol, A. A. and Erdal, Y. S. (2015). A case of ancient bladder stones from Oluz Höyük, Amasya, Turkey. International Journal of Osteoarchaeology, 25, 827–37.CrossRefGoogle Scholar
Rudd, J. H. F., Narula, J., Strauss, H. W., et al. (2010). Imaging atherosclerotic plaque inflammation by fluorodeoxyglucose with positron emission tomography. Journal of the American College of Cardiology, 55, 2527–35.CrossRefGoogle ScholarPubMed
Sangiorgi, G., Rumberger, J. A., Severson, A., et al. (1998). Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: A histologic study of 723 coronary artery segments using nondecalcifying methodology. Journal of the American College of Cardiology, 31, 126–33.CrossRefGoogle Scholar
Schembri, L., Congiu, T., Tozzi, M., et al. (2008). Scanning electron microscopy examination and elemental analysis of atherosclerotic calcifications in a human carotid plaque. Circulation, 117, e479e480.CrossRefGoogle Scholar
Shah, P. K. (2003). Mechanisms of plaque vulnerability and rupture. Journal of the American College of Cardiology, 41(4 Suppl S), 15S22S.CrossRefGoogle ScholarPubMed
Stary, H. C., Chandler, A. B., Dinsmore, R. E., et al. (1995). A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation, 92, 1355–74.CrossRefGoogle Scholar
Steinbock, R. T. (1990a). Studies in ancient calcified soft tissues and organic concretions. II: Urolithiasis (renal and urinary bladder stone disease). Journal of Paleopathology, 3, 3959.Google Scholar
Steinbock, R. T. (1990b). Studies in ancient calcified soft tissues and organic concretions. III: Gallstones (cholelithiasis). Journal of Paleopathology, 3, 95106.Google Scholar
Subirana-Domènech, M., Borondo-Alcázar, J. C., Armentano-Oller, N., et al. (2012). Arteriosclerosis in paleopathology: Are macroscopic findings well known? International Journal of Paleopathology, 2, 246–8.CrossRefGoogle ScholarPubMed
Torii, S., Mustapha, J. A., Narula, J., et al. (2019). Histopathologic characterization of peripheral arteries in subjects with abundant risk factors: Correlating imaging with pathology. Journal of the American College of Cardiology Cardiovascular Imaging, 12, 1501–13.Google ScholarPubMed
Towler, D. A. (2008). Vascular calcification: A perspective on an imminent disease epidemic. IBMS Bonekey, 5, 4158.CrossRefGoogle Scholar
Van Engelen, A., Niessen, W. J., Klein, S., et al. (2013). Automated segmentation of atherosclerotic histology based on pattern classification. Journal of Pathology Informatics 4(Suppl), S3.CrossRefGoogle ScholarPubMed
Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A. and Schwartz, S. M. (2000). Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arteriosclerosis, Thrombosis and Vascular Biology, 20, 1262–75.CrossRefGoogle Scholar
Wexler, L., Brundage, B., Crouse, J., et al. (1996). Coronary artery calcification: Pathophysiology, epidemiology, imaging methods, and clinical implications. A statement for health professionals from the American Heart Association Writing Group. Circulation, 94(5), 1175–92.CrossRefGoogle ScholarPubMed
Yang, W., Wong, K. and Chen, X. (2017). Intracranial atherosclerosis: From microscopy to high-resolution magnetic resonance imaging. Journal of Stroke, 19, 249–60.CrossRefGoogle ScholarPubMed
Yoshida, H., Yokoyama, K., Yaginuma, T., et al. (2011). Difference in coronary artery intima and media calcification in autopsied patients with chronic kidney disease. Clinical Nephrology, 75, 17.Google ScholarPubMed

References

Agatston, A. S., Janowitz, W. R., Hildner, F. J., et al. (1990). Quantification of coronary artery calcium using ultrafast computed tomography. Journal of the American College of Cardiology, 15, 827–32.CrossRefGoogle ScholarPubMed
Allam, A. H., Thompson, R. C., Wann, L. S., Miyamoto, M. I. and Thomas, G. S. (2009). Computed tomographic assessment of atherosclerosis in ancient Egyptian mummies. Journal of the American Medical Association, 302, 2091–4.Google ScholarPubMed
Allam, A. H., Thompson, R. C., Wann, L. S., et al. (2011). Atherosclerosis in ancient Egyptian mummies: The Horus study. Journal of the American College of Cardiology Cardiovascular Imaging, 4, 315–27.Google ScholarPubMed
Allam, A. H., Thompson, R. C., Eskander, M. A., et al. (2018). Is coronary calcium scoring too late? Total body arterial calcium burden in patients without known CAD and normal MPI. Journal of Nuclear Cardiology, 25, 1990–8.CrossRefGoogle ScholarPubMed
Budoff, M. J., Young, R., Lopez, V. A., et al. (2013). Progression of coronary calcium and incident coronary heart disease events: MESA (Multi-Ethnic Study of Atherosclerosis). Journal of the American College of Cardiology, 61 , 1231–39.CrossRefGoogle ScholarPubMed
Chistiakov, D. A., Orekhov, A. N. and Bobryshev, Y. V. (2016). Links between atherosclerotic and periodontal disease. Experimental and Molecular Pathology, 100(1), 220–35.CrossRefGoogle ScholarPubMed
David, R. (2010). The art of medicine: Atherosclerosis and diet in ancient Egypt. Lancet, 175, 718–19.Google Scholar
Fernandez-Friera, L., Penalvo, J. L., Fernandez-Ortiz, A., et al. (2015). Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort. The PESA (progression of early subclinical atherosclerosis) study. Circulation, 131, 2104–13.CrossRefGoogle Scholar
Fritsch, K. O., Hamoud, H., Allam, A. H., et al. (2015). The orthopedic diseases of ancient Egypt: Findings on CT scans of 52 mummies. Anatomical Record, 298(6), 1036–46.CrossRefGoogle Scholar
Gurven, M. D., Kaplan, H., Winking, J., et al. (2009). Inflammation and infection do not promote arterial aging and cardiovascular disease risk factors among lean horticulturalists. PLoS One, 4(8), e6590.CrossRefGoogle Scholar
Gurven, M. D., Jaeggi, A. V., Kaplan, H. and Cummings, D. (2013). Physical activity and modernization among Bolivian Amerindians. PLoS One, 8, e55679.CrossRefGoogle ScholarPubMed
Gurven, M. D., Trumble, B. C., Stieglitz, J., et al. (2016). Cardiovascular disease and type 2 diabetes in evolutionary perspective: A critical role for helminths? Evolution, Medicine and Public Health, 2016(1), 338–57.CrossRefGoogle ScholarPubMed
Gurven, M. D., Stieglitz, J., Trumble, B. C., et al. (2017). The Tsimane Health and Life History Project: integrating anthropology and biomedicine. Evolutionary Anthropology, 26(2), 5473.CrossRefGoogle ScholarPubMed
Gurven, M. D., Finch, C. E. and Wann, L. S. (2018). Are intestinal worms nature’s anti-atherosclerosis vaccine? European Heart Journal, 39, 1653.CrossRefGoogle ScholarPubMed
Kaplan, H., Thompson, R. C., Trumble, B. C., et al. (2017). Coronary atherosclerosis in indigenous South American Tsimane: A cross-sectional cohort study. Lancet, 389, 1730–9.CrossRefGoogle ScholarPubMed
Kaptoge, S., Pennells, L., De Bacquer, D., et al. (2019). World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Global Health, 7(10), e1332e1345.CrossRefGoogle Scholar
Kraft, T., Stieglitz, J., Trumble, B., et al. (2018). Nutrition transition in two lowland Bolivian subsistence populations. American Journal of Clinical Nutrition, 108(6), 1183–95.CrossRefGoogle Scholar
Kris-Etherton, P. M., Lefevre, M., Mensink, R. P., et al. (2012). Trans fatty acid intakes and food sources in the U.S. population: NHANES 1999–2002. Lipids, 47, 931–40.CrossRefGoogle ScholarPubMed
Lee, I. M., Shiroma, E. J., Lobelo, F., et al. (2012). Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. Lancet, 380, 219–29.Google ScholarPubMed
Lichtenstein, A. H., Appel, L. J., Brands, M., et al. (2006). Diet and lifestyle recommendations revision 2006: A scientific statement from the American Heart Association Nutrition Committee. Circulation, 114, 8296.CrossRefGoogle ScholarPubMed
Lindeberg, S., Nilsson-Ehle, P., Terent, A., et al. (1994). Cardiovascular risk factors in a Melanesian population apparently free from stroke and ischemic heart disease: The Kitava study. Journal of Internal Medicine, 236(3), 331–40.CrossRefGoogle Scholar
Mancilha-Carvalho, J. J. and Crews, D. E. (1990). Lipid profiles of Yanomamo Indians of Brazil. Preventive Medicine, 19, 6675.CrossRefGoogle ScholarPubMed
Mandal, S., Das, S., Mohanty, B. K. and Sahu, C. S. (1994). Effects of ethnic origin, dietary and life-style habits on plasma lipid profiles: A study of three population groups. Journal of Nutritional Medicine, 4, 141–8.Google Scholar
Martin, M. A., Lassek, W. D., Gaulin, S. J., et al. (2012). Fatty acid composition in the mature milk of Bolivian forager-horticulturalists: Controlled comparisons with a US sample. Maternal and Child Nutrition, 8, 404–18.CrossRefGoogle ScholarPubMed
Matthews, C. E., Chen, K. Y., Freedson, P. S., et al. (2008). Amount of time spent in sedentary behaviors in the United States, 2003–2004. American Journal of Epidemiology, 167, 875–81.CrossRefGoogle ScholarPubMed
Murphy, W. A. Jr, zur Nedden Dz, D., Gostner, P., et al. (2003). The Iceman: Discovery and imaging. Radiology, 226, 614–29.CrossRefGoogle ScholarPubMed
O’Keefe, J. H., Vogel, R., Lavie, C. J. and Cordain, L. (2010). Achieving hunter-gatherer fitness in the twenty-first century: back to the future. American Journal of Medicine, 123, 1082–6.Google Scholar
Oliver, W. J., Cohen, E. L. and Neel, J. V. (1975). Blood pressure, sodium intake, and sodium related hormones in the Yanomamo Indians, a ‘No Salt’ culture. Circulation, 52, 146–51.CrossRefGoogle ScholarPubMed
Ridker, P. M., Danielson, E., Fonseca, F.A., et al. (2009). Reduction in C-reactive protein and LDL cholesterol and cardiovascular event rates after initiation of rosuvastatin: A prospective study of the JUPITER trial. Lancet, 373(9670), 1175–82.CrossRefGoogle ScholarPubMed
Schmermund, A., Möhlenkamp, S., Stang, A., et al. (2002). Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: Rationale and design of the Heinz Nixdorf RECALL Study. Risk factors, evaluation of coronary calcium and lifestyle. American Heart Journal, 144, 212–18.CrossRefGoogle ScholarPubMed
Stary, H. C., Chandler, A. B., Dinsmore, R. E., et al. (1995). A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Atherosclerosis, American Heart Association. Circulation, 92, 1355–74.CrossRefGoogle Scholar
Tavas, E. F., Viera-Filho, J. P. B., Andriolo, A., et al. (2003). Metabolic profiles and cardiovascular risk patterns of an Indian tribe living in the Amazon region of Brazil. Human Biology, 75(1), 3146.Google Scholar
Thompson, R. C., Allam, A. H., Lombardi, G. P., et al. (2013). Atherosclerosis across 4000 years of human history: The Horus study of four ancient populations. Lancet, 381, 1211–22.CrossRefGoogle ScholarPubMed
Thompson, R. C., Allam, A. H., Zink, A., et al. (2014). Computed tomographic evidence of atherosclerosis in the mummified remains of humans from around the world. Global Heart, 9(2), 187–96.CrossRefGoogle ScholarPubMed
Thompson, R. C., Trumble, B., Neunuebel, F., et al. (2018). Atherosclerosis as manifest by thoracic aorta calcium: Insights from a remote native population with extremely low levels of coronary atherosclerosis and traditional CV risk factors (Abstract). Journal of the American College of Cardiology, 71(11 Suppl), A1685.CrossRefGoogle Scholar
Trumble, B. C., Cummings, D. K., O’Connor, K. A., et al. (2013). Age-independent increases in male salivary testosterone during horticultural activity among Tsimane forager-farmers. Evolution and Human Behavior, 34, 350–7.CrossRefGoogle ScholarPubMed
Trumble, B. C., Smith, E. A., O’Connor, K. A., et al. (2014). Successful hunting increases testosterone and cortisol in a subsistence population. Proceedings of the Royal Society B, Biological Sciences, 281(1776), 20132876.CrossRefGoogle Scholar
Yusuf, S., Hawken, S., Ôunpuu, S., et al. (2004). Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case–control study. Lancet, 364, 937–52.CrossRefGoogle ScholarPubMed
Yusuf, S., Wood, D., Ralston, J., et al. (2015). The World Heart Federation’s vision for worldwide cardiovascular disease prevention. Lancet, 386(9991), 399402.CrossRefGoogle ScholarPubMed
Zebrack, J. S. and Anderson, J. L. (2002). The role of inflammation and infection in the pathogenesis and evolution of coronary artery disease. Current Cardiology Reports, 4, 278–88.CrossRefGoogle Scholar

References

Barr, J. (2014). Vascular medicine and surgery in ancient Egypt. Journal of Vascular Surgery, 60(1), 260–3.CrossRefGoogle Scholar
Binder, M. and Roberts, C. A. (2014). Calcified structures associated with human skeletal remains: Possible atherosclerosis affecting the population buried at Amara West, Sudan (1300–800 BC). International Journal of Paleopathology, 6, 20–9.CrossRefGoogle Scholar
Buikstra, J. E. and Roberts, C. A. (eds.) (2012). A Global History of Paleopathology: Pioneers and Prospects. New York: Oxford University Press.CrossRefGoogle Scholar
Carrizales-Sepúlveda, E. F., Ordaz-Farías, A., Vera-Pineda, R. and Flores-Ramírez, R. (2018). Periodontal disease, systemic inflammation and the risk of cardiovascular disease. Heart, Lung and Circulation, 27(11), 1327–34.CrossRefGoogle ScholarPubMed
Cheng, T. O. (2001). Hippocrates and cardiology. American Heart Journal, 141, 173–83.CrossRefGoogle ScholarPubMed
Danziger, R. S. (2016). Evolutionary imprints on cardiovascular physiology and pathophysiology. In Avergne, A., Jenkinson, C. and Faurie, C., eds., Evolutionary Thinking in Medicine: From Research to Policy and Practice. Cham, Switzerland: Springer, pp. 155–63.Google Scholar
DeWitte, S. N. and Stojanowski, C. M. (2015). The osteological paradox twenty years later: Past perspectives, future directions. Journal of Archaeological Research, 23, 397450.CrossRefGoogle Scholar
Joshipura, K., Zevallos, J. C. and Ritchie, C. S. (2009). Strength of evidence relating periodontal disease and atherosclerotic disease. Compendium of Continuing Education in Dentistry, 30(7), 430–9.Google ScholarPubMed
Katz, A. M. and Katz, P. B. (1962). Diseases of the heart in the works of Hippocrates. British Heart Journal, 13(4), 423–37.Google Scholar
Nishiga, M., Wang, D. W. and Han, Y., et al. (2020). COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nature Reviews Cardiology, 17, 543–58.CrossRefGoogle ScholarPubMed
Ruffer, M. A. (1911). On arterial lesions found in Egyptian mummies. Journal of Pathology and Bacteriology, 15, 453–62.CrossRefGoogle Scholar
Subirana-Domenech, M., Borondo-Alcazar, J.-C., Armentano-Oller, N., et al. (2012). Arteriosclerosis in palaeopathology: are macroscopic findings well known? International Journal of Paleopathology, 2, 246–8.CrossRefGoogle Scholar
Wood, J. W., Milner, G. R., Harpending, H. C. and Weiss, K. M. (1992). The osteological paradox: Problems of inferring health from skeletal samples. Current Anthropology, 33(4), 343–70.CrossRefGoogle Scholar
World Health Organization. (2021). Cardiovascular diseases (CVDs). www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)Google Scholar
Wright, L. E. and Yoder, C. J. (2003). Recent progress in bioarchaeology: Approaches to the osteological paradox. Journal of Archaeological Research, 11(1), 4370.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×