Skip to main content Accessibility help
×
Home
Hostname: page-component-768ffcd9cc-7jw6s Total loading time: 1.433 Render date: 2022-12-06T00:36:01.441Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Book contents

Chapter 4 - Epidemiology and risk factors for dementia

Published online by Cambridge University Press:  01 December 2016

Bruce L. Miller
Affiliation:
University of California, San Francisco
Bradley F. Boeve
Affiliation:
Mayo Clinic, Minnesota
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hebert, L. E., Weuve, J., Scherr, P. A., Evans, D. A. (2013). Alzheimer disease in the USA (2010–2050) estimated using the 2010 census. Neurol 80(19): 1778–83.CrossRefGoogle Scholar
Rice, D. P., Fox, P. J., Max, W., et al. (1993). The economic burden of Alzheimer’s disease care. Health Aff (Millwood) 12(2): 164–76.CrossRefGoogle ScholarPubMed
Hurd, M. D., Martorell, P., Delavande, A., Mullen, K. J., Langa, K. M. (2013). Monetary costs of dementia in the USA. N Engl J Med 368(14): 1326–34.CrossRefGoogle Scholar
Barnes, D. and Yaffe, K. (2011). The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol 10(9): 819–28.CrossRefGoogle Scholar
Hebert, L. E., Scherr, P. A., McCann, J. J., Beckett, L. A., Evans, D. A. (2001). Is the risk of developing Alzheimer’s disease greater for women than for men? Am J Epidemiol 153(2): 132–6.CrossRefGoogle Scholar
Seshadri, S., Wolf, P. A., Beiser, A., et al. (1997). Lifetime risk of dementia and Alzheimer’s disease. The impact of mortality on risk estimates in the Framingham Study. Neurology Dec;49(6):1498–504.CrossRefGoogle ScholarPubMed
Kukull, W. A., Higdon, R., Bowen, J. D., McCormick, W. C., Teri, L., Schellenberg, G. D., et al. (2002). Dementia and Alzheimer disease incidence: A prospective cohort study. Arch Neurol 59(11): 1737–46.CrossRefGoogle ScholarPubMed
Rocca, W. A., Cha, R. H., Waring, S. C., Kokmen, E. (1998). Incidence of dementia and Alzheimer’s disease: a reanalysis of data from Rochester, Minnesota, 1975–1984. Am J Epidemiol 148(1): 5162.CrossRefGoogle Scholar
Gurland, B. J., Wilder, D. E., Lantigua, R., et al. (1999). Rates of dementia in three ethnoracial groups. Int J Geriatr Psychiatry 14(6): 481–93.3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Potter, G. G., Plassman, B. L., Burke, J. R., et al. (2009). Cognitive performance and informant reports in the diagnosis of cognitive impairment and dementia in African Americans and whites. Alzheimers Dement; 5(6): 445–53.CrossRefGoogle Scholar
Folstein, M. F., Bassett, S. S., Anthony, J. C., Romanoski, A. J., Nestadt, G. R. (1991). Dementia: case ascertainment in a community survey. J Gerontol 46(4): M132–8.CrossRefGoogle Scholar
Tang, M. X., Cross, P., Andrews, H., et al. (2001). Incidence of AD in African-Americans, Caribbean Hispanics, and Caucasians in northern Manhattan. Neurology 56(1): 4956.CrossRefGoogle Scholar
Yaffe, K., Falvey, C., Harris, T. B., et al., Health ABC Study (2013b). Effect of socioeconomic disparities on incidence of dementia among biracial older adults: prospective study. BMJ 347: f7051.CrossRefGoogle ScholarPubMed
Jorm, A. F. and Jolley, D. (1998). The incidence of dementia: a meta-analysis. Neurology 51(3): 728–33.CrossRefGoogle ScholarPubMed
Manly, J. and Mayeux, R. (2004). Ethnic differences in dementia and Alzheimer’s disease. In Critical Perspectives on Racial and Ethnic Differentials in Health in Late Life, Anderson, N., Bulatao, R., Cohen, B. (eds.). Washington, DC: National Academies Press, pp. 95141.Google Scholar
White, L., Petrovitch, H., Ross, G. W., et al. (1996). Prevalence of dementia in older Japanese-American men in Hawaii: the Honolulu-Asia Aging Study. JAMA 276(12): 955–60.CrossRefGoogle Scholar
Evans, D. A., Hebert, L. E., Beckett, L. A., et al. (1997). Education and other measures of socioeconomic status and risk of incident Alzheimer disease in a defined population of older persons. Arch Neurol 54(11): 1399–405.CrossRefGoogle Scholar
Stern, Y., Gurland, B., Tatemichi, T. K., et al. (1994). Influence of education and occupation on the incidence of Alzheimer’s disease. JAMA 271(13): 1004–10.CrossRefGoogle Scholar
Snowdon, D. A., Kemper, S. J., Mortimer, J. A., et al. (1996). Linguistic ability in early life and cognitive function and Alzheimer’s disease in late life. Findings from the Nun Study. JAMA 275(7): 528–32.Google ScholarPubMed
Roe, C. M., Xiong, C., Miller, J. P., Morris, J. C. (2007). Education and Alzheimer disease without dementia: Support for the cognitive reserve hypothesis. Neurology 68(3): 223–8.CrossRefGoogle ScholarPubMed
Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol 11(11): 1006–12.CrossRefGoogle ScholarPubMed
Lazarov, O., Robinson, J., Tang, Y. P., et al. (2005). Environmental enrichment reduces abeta levels and amyloid deposition in transgenic mice. Cell 120(5): 701–13.CrossRefGoogle ScholarPubMed
Van Praag, H., Christie, B. R., Sejnowski, T. J., Gage, F. H. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96(23): 13427–31.CrossRefGoogle ScholarPubMed
Kaup, A. R., Simonsick, E. M., Harris, T. B., et al. (2014). Older adults with limited literacy are at increased risk for likely dementia. J Gerontol A Biol Sci Med Sci 69(7): 900–6.CrossRefGoogle Scholar
Snowdon, D. A., Greiner, L. H., Mortimer, J. A., et al. (1997). Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 277(10): 813–7.CrossRefGoogle ScholarPubMed
Ahtiluoto, S., Polvikoski, T., Peltonen, M., et al. (2010). Diabetes, Alzheimer disease, and vascular dementia: A population-based neuropathologic study. Neurology 75(13): 1195–202.CrossRefGoogle ScholarPubMed
Hassing, L. B., Johansson, B., Nilsson, S. E., et al. (2002). Diabetes mellitus is a risk factor for vascular dementia, but not for Alzheimer’s disease: a population-based study of the oldest old. Int Psychogeriatr 14(3): 239–48.CrossRefGoogle Scholar
Areosa, S. A. and Grimley, E. V. (2002). Effect of the treatment of type II diabetes mellitus on the development of cognitive impairment and dementia. Cochrane Database Syst Rev (4): CD003804.Google Scholar
Rönnemaa, E., Zethelius, B., Lannfelt, L., Kilander, L. (2011). Vascular risk factors and dementia: 40-year follow-up of a population-based cohort. Dement Geriatr Cogn Disord 31(6): 460–6.CrossRefGoogle ScholarPubMed
Yaffe, K., Blackwell, T., Kanaya, A. M., et al. (2004). Diabetes, impaired fasting glucose, and development of cognitive impairment in older women. Neurology 63(4): 658–63.CrossRefGoogle ScholarPubMed
Yaffe, K., Falvey, C. M., Hamilton, N., et al., Health ABC Study (2013). Association between hypoglycemia and dementia in a biracial cohort of older adults with diabetes mellitus. JAMA Intern Med 173(14): 1300–6.CrossRefGoogle Scholar
Craft, S., Baker, L. D., Montine, T. J., et al. (2012). Intranasal insulin therapy for Alzheimer disease and amnestic mild cognitive impairment: a pilot clinical trial. Arch Neurol 69(1): 2938.CrossRefGoogle Scholar
Qiu, C (2012). Preventing Alzheimer’s disease by targeting vascular risk factors: hope and gap. J Alzheimers Dis 32(3): 721–31.Google ScholarPubMed
Launer, L. J., Ross, G. W., Petrovitch, H., et al. (2000). Midlife blood pressure and dementia: the Honolulu-Asia aging study. Neurobiol Aging 21(1): 4955.CrossRefGoogle Scholar
Qiu, C., Winblad, B. and Fratiglioni, L. (2005). The age-dependent relation of blood pressure to cognitive function and dementia. Lancet Neurol 4(8): 487–99.CrossRefGoogle ScholarPubMed
Zeki Al Hazzouri, A., Newman, A. B., Simonsick, E., et al., Health ABC Study (2013a). Pulse wave velocity and cognitive decline in elders: The Health, Aging and Body Composition study. Stroke 44(2): 388–93.CrossRefGoogle Scholar
Power, M. C., Weuve, J., Gagne, J. J., et al. (2011). The association between blood pressure and incident Alzheimer disease: a systematic review and meta-analysis. Epidemiology 22(5): 646–59.CrossRefGoogle Scholar
Shepardson, N. E., Shankar, G. M., Selkoe, D. J. (2011). Cholesterol level and statin use in Alzheimer disease: I. Review of epidemiological and preclinical studies. Arch Neurol 68(10):1239–44.Google ScholarPubMed
Launer, L. J., White, L. R., Petrovitch, H., Ross, G. W., Curb, J. D. (2001). Cholesterol and neuropathologic markers of AD: a population-based autopsy study. Neurology 57(8): 1447–52.CrossRefGoogle ScholarPubMed
Amarenco, P., Labreuche, J., Elbaz, A., et al. (2006). Blood lipids in brain infarction subtypes. Cerebrovasc Dis 22(2–3): 101–8.CrossRefGoogle ScholarPubMed
Solomon., A. and Kivipelto, M. (2009). Cholesterol-modifying strategies for Alzheimer’s disease. Expert Rev Neurother 9(5): 695709.CrossRefGoogle ScholarPubMed
Reitz, C., Tang, M. X., Schupf, N., et al. (2010). Association of higher levels of high-density lipoprotein cholesterol in elderly individuals and lower risk of late-onset Alzheimer disease. Arch Neurol 67(12): 1491–7.CrossRefGoogle ScholarPubMed
Hildreth, K. L., Van Pelt, R. E., Schwartz, R. S. (2012). Obesity, insulin resistance, and Alzheimer’s disease. Obesity 20(8): 1549–57.CrossRefGoogle Scholar
Anstey, K. J., Cherbuin, N., Budge, M., Young, J. (2011). Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev 12(5): e426e437.CrossRefGoogle Scholar
Whitmer, R. A., Sidney, S., Selby, J., Johnston, S. C., Yaffe, K. (2005). Midlife cardiovascular risk factors and risk of dementia in late life. Neurology 64(2): 277–81.CrossRefGoogle ScholarPubMed
Zeki Al Hazzouri, A., Haan, M. N., Whitmer, R. A., Yaffe, K., Neuhaus, J. (2012). Central obesity, leptin and cognitive decline among older Mexican Americans in the Sacramento Area Latino Study on Aging. Dement Geriatr Cogn Disord 33(6): 400–9.CrossRefGoogle ScholarPubMed
Zeki Al Hazzouri, A., Stone, K. L., Haan, M. N., Yaffe, K. (2013). Leptin, mild cognitive impairment, and dementia among elderly women. J Gerontol A Biol Sci Med Sci 68(2): 175–80.CrossRefGoogle ScholarPubMed
Reitz, C., Brayne, C., Mayeux, R. (2011). Epidemiology of Alzheimer disease. Nat Rev Neurol 7(3): 137–52.CrossRefGoogle ScholarPubMed
Yaffe, K., Kanaya, A., Lindquist, K., et al. (2004). The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA 292(18): 2237–42.CrossRefGoogle Scholar
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8(3): 448–60.CrossRefGoogle ScholarPubMed
Treiber, K. A., Carlson, M. C., Corcoran, C., et al. (2011). Cognitive stimulation and cognitive and functional decline in Alzheimer’s disease: the Cache County Dementia Progression Study. J Gerontol B Psychol Sci Soc Sci 66(4): 416–25.Google ScholarPubMed
Landau, S. M., Marks, S. M., Mormino, E. C., et al. (2012). Association of lifetime cognitive engagement and low β-amyloid deposition. Arch Neurol 69(5): 623–9.Google ScholarPubMed
Gates, N., Sachdev, P., Fiatarone Singh, M., Valenzuela, M. (2011). Cognitive and memory training in adults at risk of dementia: a systematic review. BMC Geriatr 11: 55.CrossRefGoogle Scholar
Woods, B., Aguirre, E., Spector, A., Orrell, M. (2012). Cognitive stimulation to improve cognitive functioning in people with dementia. Cochrane Database Syst Rev 2: CD005562.Google Scholar
Anguera, J. A., Boccanfuso, J., Rintoul, J. L., et al. (2013). Video game training enhances cognitive control in older adults. Nature 501(7465): 97101.CrossRefGoogle ScholarPubMed
Abbott, R. D., White, L. R., Ross, G. W., et al. (2004). Walking and dementia in physically capable elderly men. JAMA 292(12): 1447–53.CrossRefGoogle ScholarPubMed
Weuve, J., Kang, J. H., Manson, J. E., et al. (2004). Physical activity, including walking, and cognitive function in older women. JAMA 292(12): 1454–61.CrossRefGoogle ScholarPubMed
Yaffe, K., Barnes, D., Nevitt, M., Lui, L. Y., Covinsky, K. (2001). A prospective study of physical activity and cognitive decline in elderly women: women who walk. Arch Intern Med 161(14): 1703–8.CrossRefGoogle ScholarPubMed
Sofi, F., Valecchi, D., Bacci, D., et al. (2011). Physical activity and risk of cognitive decline: a meta-analysis of prospective studies. J Intern Med 269(1): 107–17.CrossRefGoogle ScholarPubMed
Middleton, L. E., Barnes, D. E., Lui, L. Y., Yaffe, K. (2010). Physical activity over the life course and its association with cognitive performance and impairment in old age. J Am Geriatr Soc 58(7): 1322–6.CrossRefGoogle ScholarPubMed
Erickson, K. I., Raji, C. A., Lopez, O. L., et al. (2010). Physical activity predicts gray matter volume in late adulthood: the Cardiovascular Health Study. Neurology 75(16): 1415–22.CrossRefGoogle ScholarPubMed
Colcombe, S. and Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14(2): 125–30.CrossRefGoogle Scholar
Lautenschlager, N.T., Cox, K. L., Flicker, L., et al. (2008). Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA 300(9): 1027–37.CrossRefGoogle ScholarPubMed
Smith, P. J., Blumenthal, J. A., Hoffman, B. M., et al. (2010). Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med 72(3): 239–52.CrossRefGoogle ScholarPubMed
Littbrand, H., Stenvall, M., Rosendahl, E. (2011). Applicability and effects of physical exercise on physical and cognitive functions and activities of daily living among people with dementia: a systematic review. Am J Phys Med Rehabil 90(6): 495518.CrossRefGoogle Scholar
Taylor, R. S., Brown, A., Ebrahim, S., et al. (2004). Exercise-based rehabilitation for patients with coronary heart disease: Systematic review and meta-analysis of randomized, controlled trials. Am J Med 116(10): 682–92.CrossRefGoogle Scholar
Lee, C. D., Folsom, A. R., Blair, S. N. (2003). Physical activity and stroke risk: A meta-analysis. Stroke 34(10): 2475–81.CrossRefGoogle Scholar
Adlard, P. A., Perreau, V. M., Pop, V., and Cotman, C. W. (2005). Voluntary exercise decreases amyloid load in a transgenic model of Alzheimer’s disease. J Neurosci 25(17): 4217–21.CrossRefGoogle Scholar
Anstey, K. J., Mack, H. A., Cherbuin, N. (2009). Alcohol consumption as a risk factor for dementia and cognitive decline: meta-analysis of prospective studies. Am J Geriatr Psychiatry 17(7): 542555.CrossRefGoogle ScholarPubMed
Mukamal, K. J., Kuller, L. H., Fitzpatrick, A. L., et al. (2003). Prospective study of alcohol consumption and risk of dementia in older adults. JAMA 289(11): 1405–13.CrossRefGoogle ScholarPubMed
Ruitenberg, A., van Swieten, J. C., Witteman, J. C., et al. (2002). Alcohol consumption and risk of dementia: the Rotterdam Study. Lancet 359(9303): 281–6.CrossRefGoogle ScholarPubMed
Stampfer, M. J., Kang, J. H., Chen, J., Cherry, R., Grodstein, F. (2005). Effects of moderate alcohol consumption on cognitive function in women. N Engl J Med 352(3): 245–53.CrossRefGoogle ScholarPubMed
Collins, M., Neafsey, E., Wang, K., Achille, N., Mitchell, R., Sivaswamy, S. (2010). Moderate ethanol preconditioning of rat brain cultures engenders neuroprotection against dementia-inducing neuroinflammatory proteins: possible signaling mechanisms. Mol Neurobiol 41(2–3): 420–5.CrossRefGoogle ScholarPubMed
Anstey, K. J., Von Sanden, C., Salim, A., O’Kearney, R. (2007). Smoking as a risk factor for dementia and cognitive decline: A meta-analysis of prospective studies. Am J Epidemiol 166(4): 367–78.CrossRefGoogle ScholarPubMed
Gons, R. A. R., Van Norden, A. G., de Laat, K. F., et al. (2011). Cigarette smoking is associated with reduced microstructural integrity of cerebral white matter. Brain 134(pt 7): 2116–124.CrossRefGoogle ScholarPubMed
Almeida, O. P., Hulse, G. K., Lawrence, D., Flicker, L. (2002). Smoking as a risk factor for Alzheimer’s disease: contrasting evidence from a systematic review of case-control and cohort studies. Addiction 97(1): 1528.CrossRefGoogle ScholarPubMed
Rusanen, M., Kivipelto, M., Quesenberry, C. P., Zhou, J., Whitmer, R. A. (2011). Heavy smoking in midlife and long-term risk of Alzheimer disease and vascular dementia. Arch Intern Med 171(4): 333–9.CrossRefGoogle ScholarPubMed
Almeida, O. P., Garrido, G. J., Alfonso, H., et al. (2011). 24-Month effect of smoking cessation on cognitive function and brain structure in later life. Neuroimage 55(4): 1480–9.CrossRefGoogle ScholarPubMed
Behl, C. (2005). Oxidative stress in Alzheimer’s disease: implications for prevention and therapy. Subcell Biochem 38: 6578.CrossRefGoogle ScholarPubMed
Engelhart, M. J., Geerlings, M. I., Ruitenberg, A. et al. (2002). Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 287(24): 3223–9.CrossRefGoogle ScholarPubMed
Maxwell, C. J., Hicks, M. S., Hogan, D. B., Basran, J., Ebly, E. M. (2005). Supplemental use of antioxidant vitamins and subsequent risk of cognitive decline and dementia. Dement Geriatr Cogn Disord 20(1): 4551.CrossRefGoogle ScholarPubMed
Sano, M., Ernesto, C., Thomas, R. G., et al. (1997). A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s Disease Cooperative Study. N Engl J Med 336(17): 1216–22.CrossRefGoogle ScholarPubMed
Morris, M. C (2012). Nutritional determinants of cognitive aging and dementia. Proc Nutr Soc 71(1): 113.CrossRefGoogle ScholarPubMed
Petersen, R. C., Thomas, R. G., Grundman, M., et al. (2005). Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 352(23): 2379–88.CrossRefGoogle ScholarPubMed
Yaffe, K., Clemons, T. E., McBee, W. L., Lindblad, A. S. (2004). Impact of antioxidants, zinc, and copper on cognition in the elderly. A randomized, controlled trial. Neurology 63(9): 1705–7.Google ScholarPubMed
Dangour, A. D., Andreeva, V. A., Sydenham, E., Uauy, R. (2012). Omega 3 fatty acids and cognitive health in older people. B J Nutr 107(Suppl 2): S152–8.CrossRefGoogle ScholarPubMed
Lim, W., Gammack, J., Van Niekerk, J., Dangour, A. (2006). Omega 3 fatty acid for the prevention of dementia. Cochrane Database Syst Rev (1): CD005379.Google Scholar
Morris, M. C., Evans, D. A., Tangney, C. C., Bienias, J. L. , Wilson, R. S. (2005). Fish consumption and cognitive decline with age in a large community study. Arch Neurol 62(12): 1849–53.CrossRefGoogle Scholar
Yurko-Mauro, K., McCarthy, D., Rom, D., et al., MIDAS Investigators (2010). Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement 6(6): 456–64.CrossRefGoogle ScholarPubMed
Lyketsos, C. G., Lopez, O., Jones, B., et al. (2002). Prevalence of neuropsychiatric symptoms in dementia and mild cognitive impairment: results from the Cardiovascular Health Study. JAMA 288(12): 1475–83.CrossRefGoogle ScholarPubMed
Starkstein, S. E., Jorge, R., Mizrahi, R., Robinson, R. G. (2005). The construct of minor and major depression in Alzheimer’s disease. Am J Psychiatry 162(11): 2086–93.CrossRefGoogle ScholarPubMed
Geerlings, M. I., Schoevers, R. A., Beekman, A. T., et al. (2000). Depression and risk of cognitive decline and Alzheimer’s disease. Results of two prospective community-based studies in the Netherlands. Br J Psychiatry 176: 568–75.CrossRefGoogle ScholarPubMed
Ownby, R. L., Crocco, E., Acevedo, A., John, V., Loewenstein, D. (2006). Depression and risk for Alzheimer disease: Systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry 63(5): 530–8.CrossRefGoogle ScholarPubMed
Wilson, R. S., Barnes, L. L., Mendes de Leon, C. F., et al. (2002). Depressive symptoms, cognitive decline, and risk of AD in older persons. Neurology 59(3): 364–70.CrossRefGoogle ScholarPubMed
Dufouil, C., Fuhrer, R., Dartigues, J. F., Alperovitch, A. (1996). Longitudinal analysis of the association between depressive symptomatology and cognitive deterioration. Am J Epidemiol 144(7): 634–41.CrossRefGoogle ScholarPubMed
Chen, P., Ganguli, M., Mulsant, B. H., DeKosky, S. T. (1999). The temporal relationship between depressive symptoms and dementia: a community-based prospective study. Arch Gen Psychiatry 56(3): 261–6.CrossRefGoogle ScholarPubMed
Zeki Al Hazzouri, A., Vittinghoff, E., Byers, A. L., et al. (2014). Long term depressive symptom burden and risk of cognitive decline and dementia among very old women. J Gerontol A Biol Sci Med Sc May; 69(5): 595601.CrossRefGoogle ScholarPubMed
Byers, A. L., and Yaffe, K. (2011). Depression and risk of developing dementia. Nat Rev Neurol 7(6): 323–31.CrossRefGoogle ScholarPubMed
Hardy, J. and Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580): 353–6.CrossRefGoogle Scholar
Rapp, M. A., Schnaider-Beeri, M., Grossman, H. T., et al. (2006). Increased hippocampal plaques and tangles in patients with Alzheimer disease with a lifetime history of major depression. Arch Gen Psychiatry 63(2): 161–7.CrossRefGoogle ScholarPubMed
Metti, A. L., Cauley, J. A., Newman, A. B., et al. (2013). Plasma beta amyloid level and depression in older adults. J Gerontol A. Biol Sci Med Sci 68(1): 74–9.CrossRefGoogle Scholar
Yaffe, K., Weston, A., Graff-Radford, N. R., et al., (2011). Association of plasma beta-amyloid level and cognitive reserve with subsequent cognitive decline. JAMA 305(3): 261–6.Google ScholarPubMed
Brown, E. S., Varghese, F. P., McEwen, B. S. (2004). Association of depression with medical illness: does cortisol play a role? Biol Psychiatry 55(1): 19.CrossRefGoogle ScholarPubMed
Butters, M. A., Becker, J. T., Nebes, R. D. et al. (2000). Changes in cognitive functioning following treatment of late-life depression. Am J Psychiatry 157(12): 1949–54.CrossRefGoogle ScholarPubMed
Doraiswamy, P. M., Krishnan, K. R., Oxman, T. et al. (2003). Does antidepressant therapy improve cognition in elderly depressed patients? J Gerontol A Biol Sci Med Sci 58(12): M1137–44.CrossRefGoogle ScholarPubMed
Nebes, R. D., Pollock, B. G., Houck, P. R., et al. (2003). Persistence of cognitive impairment in geriatric patients following antidepressant treatment: a randomized, double-blind clinical trial with nortriptyline and paroxetine. J Psychiatr Res 37(2): 99108.CrossRefGoogle ScholarPubMed
Heyman, A., Wilkinson, W. E., Stafford, J. A., et al. (1984). Alzheimer’s disease: a study of epidemiological aspects. Ann Neurol 15(4): 335–41.CrossRefGoogle ScholarPubMed
Brayne, C. (1991). The EURODEM collaborative re-analysis of case-control studies of Alzheimer’s disease: implications for public health. Int J Epidemiol 20(Suppl 2): S68–71.CrossRefGoogle ScholarPubMed
Plassman, B. L., Havlik, R. J., Steffens, D. C., et al. (2000). Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology 55(8): 1158–66.CrossRefGoogle ScholarPubMed
Omalu, B., Hammers, J. L., Bailes, J., et al. (2011). Chronic traumatic encephalopathy in an Iraqi war veteran with posttraumatic stress disorder who committed suicide. Neurosurg Focus 31(5): E3.CrossRefGoogle Scholar
Salazar, A. M., Warden, D. L., Schwab, K., et al. (2000). Cognitive rehabilitation for traumatic brain injury: A randomized trial. Defense and Veterans Head Injury Program (DVHIP) Study Group. JAMA 283(23): 3075–81.CrossRefGoogle ScholarPubMed
Barnes, D. E., Kaup, A., Kirby, K., et al. (2014). Traumatic brain injury and risk of dementia in older veterans. Neurology Jul 22;83(4): 312–19CrossRefGoogle ScholarPubMed
Dams-O’Connor, K., Gibbons, L. E., Bowen, J. D., et al. (2013). Risk for late-life re-injury, dementia and death among individuals with traumatic brain injury: a population-based study. J Neurol Neurosurg Psychiatry 84(2): 177–82.Google ScholarPubMed
Lindsay, J., Laurin, D., Verreault, R., et al. (2002). Risk factors for Alzheimer’s disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 156(5): 445–53.CrossRefGoogle ScholarPubMed
Johnsen, G. E. and Asbjornsen, A. E. (2008). Consistent impaired verbal memory in PTSD: a meta-analysis. J Affect Disord 111(1): 7482.CrossRefGoogle ScholarPubMed
Vasterling, J. J., Proctor, S. P., Amoroso, P., et al. (2006). Neuropsychological outcomes of Army personnel following deployment to the Iraq war. JAMA 296(5): 519–29.Google ScholarPubMed
Yehuda, R., Tischler, L., Golier, J. A., et al. (2006). Longitudinal assessment of cognitive performance in Holocaust survivors with and without PTSD. Biol Psychiatry 60(7): 714–21.CrossRefGoogle ScholarPubMed
Cohen, B. E., Neylan, T. C., Yaffe, K., et al. (2013). Posttraumatic stress disorder and cognitive function: findings from the mind your heart study. J Clin Psychiatry 74(11): 1063–70.CrossRefGoogle ScholarPubMed
Yaffe, K., Vittinghoff, E., Lindquist, K., et al. (2010). Posttraumatic stress disorder and risk of dementia among US veterans. Arch Gen Psychiatry 67(6): 608–13.CrossRefGoogle ScholarPubMed
Yehuda, R (2002). Post-traumatic stress disorder. N Engl J Med 346(2): 108114.CrossRefGoogle ScholarPubMed
Herbert, J., Goodyer, I. M., Grossman, A. B., et al. (2006). Do corticosteroids damage the brain? J Neuroendocrinol 18(6): 393411.CrossRefGoogle Scholar
Fratiglioni, L., Paillard-Borg, S., Winblad, B. (2004). An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol 3(6): 343–53.CrossRefGoogle ScholarPubMed
Saczynski, J. S., Pfeifer, L. A., Masaki, K., et al. (2006). The effect of social engagement on incident dementia: the Honolulu-Asia Aging Study. Am J Epidemiol 163(5): 433–40.CrossRefGoogle ScholarPubMed
Scarmeas, N., Levy, G., Tang, M. X., Manly, J., Stern, Y. (2001). Influence of leisure activity on the incidence of Alzheimer’s disease. Neurology 57(12): 2236–42.CrossRefGoogle ScholarPubMed
Sharp, E. S., Reynolds, C. A., Pedersen, N. L., Gatz, M. (2010). Cognitive engagement and cognitive aging: Is openness protective? Psychol Aging 25(1):6073.CrossRefGoogle ScholarPubMed
Amieva, H., Stoykova, R., Matharan, F., et al. (2010). What aspects of social network are protective for dementia? Not the quantity but the quality of social interactions is protective up to 15 years later. Psychosom Med 72(9): 905–11.CrossRefGoogle Scholar
Mortimer, J. A., Ding, D., Borenstein, A. R., et al. (2012). Changes in brain volume and cognition in a randomized trial of exercise and social interaction in a community-based sample of non-demented Chinese elders. J Alzheimers Dis 30(4): 757–66.Google Scholar
Pitkala, K. H., Routasalo, P., Kautiainen, H., et al. (2011). Effects of socially stimulating group intervention on lonely, older people’s cognition: a randomized, controlled trial. Am J Geriatr Psychiatry 19(7): 654–63.CrossRefGoogle ScholarPubMed
McGuiness, B., Todd, S., et al. (2009). Blood pressure lowering in patients without prior cerebrovascular disease for prevention of cognitive impairment and dementia. Cochrane Database Syst Rev (4): CD004034.Google Scholar
Forette, F., Seux, M. L., Staessen, J. A., et al. (1998). Prevention of dementia in randomised double-blind placebo-controlled Systolic Hypertension in Europe (Syst-Eur) trial. Lancet 352(9137): 1347–51.CrossRefGoogle ScholarPubMed
Forette, F., Seux, M. L., et al. (2002). The prevention of dementia with antihypertensive treatment: new evidence from the Systolic Hypertension in Europe (Syst-Eur) study. Arch Intern Med 162(18): 2046–52.CrossRefGoogle ScholarPubMed
Skoog, I., Lithell, H., et al. (2005). Effect of baseline cognitive function and antihypertensive treatment on cognitive and cardiovascular outcomes: Study on COgnition and Prognosis in the Elderly (SCOPE). Am J Hypertens 18(8): 1052–9.CrossRefGoogle Scholar
Anderson, C., Teo, K., et al. (2011). Renin-angiotensin system blockade and cognitive function in patients at high risk of cardiovascular disease: analysis of data from the ONTARGET and TRANSCEND studies. Lancet Neurol 10(1): 4353.CrossRefGoogle ScholarPubMed
Beydoun, M. A., Beason-Held, L. L., Kitner-Triolo, M. H., et al. (2011). Statins and serum cholesterol’s associations with incident dementia and mild cognitive impairment. J Epidemiol Community Health 65: 949–57.CrossRefGoogle ScholarPubMed
Dufouil, C., Richard, F., Fievet, N., et al. (2005). APOE genotype, cholesterol level, lipid-lowering treatment, and dementia: the Three-City Study. Neurology 64: 1531–8.CrossRefGoogle ScholarPubMed
Jick, H., Zornberg, G. L., Jick, S. S., Seshadri, S., Drachman, D. A. (2000). Statins and the risk of dementia. Lancet 356:1627–31.CrossRefGoogle Scholar
McGuinness, B., O’Hare, J., Craig, D., Bullock, R., Malouf, R., Passmore, P. (2013). Cochrane review on ‘Statins for the treatment of dementia’. Int J Geriatr Psychiatry 28: 119–26.CrossRefGoogle ScholarPubMed
Zhou, B., Teramukai, S., Fukushima, M. (2007). Prevention and treatment of dementia or Alzheimer’s disease by statins: a meta-analysis. Dement. Geriatr Cogn Disord 23: 194201.CrossRefGoogle ScholarPubMed
Muldoon, M. F., Barger, S. D., Ryan, C. M., et al. (2000). Effects of lovastatin on cognitive function and psychological well-being. Am J Medicine 108: 538–46.CrossRefGoogle ScholarPubMed
Muldoon, M. F., Ryan, C. M., Sereika, S. M., Flory, J. D., Manuck, S. B. (2004). Randomized trial of the effects of simvastatin on cognitive functioning in hypercholesterolemic adults. Am J Medicine 117: 823–9.CrossRefGoogle ScholarPubMed
Padala, K. P., Padala, P. R., Potter, J. F. (2010). Statins: a case for drug withdrawal in patients with dementia. J Am Geriatr Soc 58: 1214–16.CrossRefGoogle ScholarPubMed
Arvanitakis, Z., Schneider, J. A., Wilson, R. S., et al. (2008). Statins, incident Alzheimer disease, change in cognitive function, and neuropathology. Neurology 70: 1795–802.CrossRefGoogle ScholarPubMed
Trompet, S., van Vliet, P., de Craen, A. J., et al. (2010). Pravastatin and cognitive function in the elderly. Results of the PROSPER study. J. Neurol 257: 8590.CrossRefGoogle Scholar
McGeer, P. L., Schulzer, M., McGeer, E. G. (1996). Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology 47(2): 425–32.CrossRefGoogle ScholarPubMed
Szekely, C. A., Thorne, J. E., Zandi, P. P., et al. (2004). Nonsteroidal anti-inflammatory drugs for the prevention of Alzheimer’s disease: a systematic review. Neuroepidemiology 23(4): 159–69.CrossRefGoogle ScholarPubMed
Aisen, P. S. and Davis, K. L. (1994). Inflammatory mechanisms in Alzheimer’s disease: implications for therapy. Am J Psychiatry 151(8): 1105–13.Google ScholarPubMed
Aisen, P. S., Schafer, K. A., Grundman, M., et al. (2003). Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA 289(21): 2819–26.CrossRefGoogle ScholarPubMed
Yaffe, K. (2001a). Estrogens, selective estrogen receptor modulators, and dementia: what is the evidence? Ann N Y Acad Sci 949: 215–22.Google ScholarPubMed
Yaffe, K., Krueger, K., Cummings, S. R., et al. (2005). Effect of raloxifene on prevention of dementia and cognitive impairment in older women: the Multiple Outcomes of Raloxifene Evaluation (MORE) randomized trial. Am J Psychiatry 162(4): 683–90.CrossRefGoogle ScholarPubMed
Shumaker, S. A., Legault, C., Rapp, S. R., et al. (2003). Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women’s Health Initiative Memory Study: a randomized controlled trial. JAMA 289(20): 2651–62.CrossRefGoogle ScholarPubMed
Shumaker, S. A., Legault, C., Kuller, L., et al. (2004). Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women’s Health Initiative Memory Study. JAMA 291(24): 2947–58.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×