Skip to main content Accessibility help
×
Home
Hostname: page-component-56f9d74cfd-h4v4t Total loading time: 0.679 Render date: 2022-06-26T05:38:28.424Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Chapter 11 - Mapping Genes Influencing Human Quantitative Trait Variation

Published online by Cambridge University Press:  05 June 2012

John Blangero
Affiliation:
Southwest Foundation for Biomedical Research
Jeff Williams
Affiliation:
Southwest Foundation for Biomedical Research
Laura Almasy
Affiliation:
Southwest Foundation for Biomedical Research
Sarah Williams-Blangero
Affiliation:
Southwest Foundation for Biomedical Research
Michael H. Crawford
Affiliation:
University of Kansas
Get access

Summary

Introduction

In the post-genomic era, the genetic analysis of common diseases will be one of the most critically important areas of biomedical science. Over the past two decades, it has become clear that many of the diseases that constitute the major public health burden in the United States – diseases such as diabetes, atherosclerosis, obesity, hypertension, depression, alcoholism, osteoporosis, and cancer – have a substantial genetic component. The genetic architecture of such diseases is complex, however, involving multiple genetic and environmental components and their interactions. The specific quantitative trait loci (QTLs) that are involved in the biological pathways of these diseases, and the individual effects of these QTLs in the general population, are still largely unknown. The stochastic complexity of the genotype-phenotype relationship of a common disease requires that statistical inference plays a prominent role in the dissection of the underlying genetic architecture. However, statistical genetic methods suitable for this immense task are still in their infancy. The genomic localization and identification of QTLs and characterization of their causal functional polymorphisms will require new advanced statistical genetic tools.

Over the past decade, we have been successful in developing the theoretical and empirical foundation requisite to a thorough understanding of the strengths and weaknesses of variance component-based quantitative trait linkage methods. We have incorporated many of our statistical genetic developments into our freely available computer package, SOLAR (Sequential Oligogenic Linkage Analysis Routines) (Almasy and Blangero, 1998).

Type
Chapter
Information
Anthropological Genetics
Theory, Methods and Applications
, pp. 306 - 334
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcais, A. and Abel, L. (2000). Linkage analysis of quantitative trait loci: sib pairs or sibships?Hum Hered, 50, 251–6CrossRefGoogle ScholarPubMed
Allison, D. B., Neale, M. C., Zannolli, R., Schork, N. J., Amos, , C. I. and Blangero, J. (1999). Testing the robustness of the likelihood-ratio test in a variance-component quantitative-trait loci-mapping procedure. Am J Hum Genet, 65, 531–4CrossRefGoogle Scholar
Almasy, L. and Blangero, J. (1998). Multipoint quantitative trait linkage analysis in general pedigrees. Am J Hum Genet, 62, 1198–1211CrossRefGoogle Scholar
Almasy, L. and Blangero, J. (2001). Endophenotypes as quantitative risk factors for psychiatric disease: Rationale and study design. Am J Med Genet, 105, 42–43.0.CO;2-9>CrossRefGoogle ScholarPubMed
Almasy, L. and Blangero, J. (2004). Exploring positional candidate genes: linkage conditional on measured genotype. Behav Genet, 34, 173–7CrossRefGoogle ScholarPubMed
Almasy, L., Dyer, T. D. and Blangero, J. (1997). Bivariate quantitative trait linkage analysis: pleiotropy versus co-incident linkages. Genet Epidemiol, 14, 953–83.0.CO;2-K>CrossRefGoogle ScholarPubMed
Almasy, L., Hixson, J. E., Rainwater, D. L., Cole, S., Williams, J. T., Mahaney, M. C., VandeBerg, J. L., Stern, M. P., MacCluer, J. W. and Blangero, J. (1999a). Human pedigree-based quantitative-trait-locus mapping: localization of two genes influencing HDL-cholesterol metabolism. Am J Hum Genet, 64, 1686–93CrossRefGoogle Scholar
Almasy, L., Williams, J. T., Dyer, T. D. and Blangero, J. (1999b). Quantitative trait locus detection using combined linkage/disequilibrium analysis. Genet Epidemiol, 17, S31–S36CrossRefGoogle Scholar
Almasy, L., Towne, B., Peterson, C. and Blangero, J. (2001). Detecting genotype-by-age interaction. Genet Epidemiol, 21 (Suppl 1), S819–S824CrossRefGoogle Scholar
Almasy, L., Soria, J. M., Souto, J. C., Coll, I., Bacq, D., Faure, A., Mateo, J., Borrell, M., Munoz, X., Sala, N., Stone, W. H., Lathrop, M., Fontcuberta, J. and Blangero, J. (2003). A quantitative trait locus influencing free plasma protein S levels on human chromosome 1q: results from the Genetic Analysis of Idiopathic Thrombophilia (GAIT) project. Arterioscler Thromb Vasc Biol, 23, 508–11CrossRefGoogle ScholarPubMed
Amos, C. I. (1994). Robust variance-components approach for assessing genetic linkage in pedigrees. Am J Hum Genet, 54, 535–43Google Scholar
Amos, C. I., Zhu, D. K. and Boerwinkle, E. (1996). Assessing genetic linkage and association with robust components of variance approaches. Ann Hum Genet, 60, 143–60CrossRefGoogle ScholarPubMed
Amos, C., Andrade, M. and Zhu, D. (2001). Comparison of multivariate tests for genetic linkage. Hum Hered, 51, 133–44CrossRefGoogle ScholarPubMed
Amos, C. I., Elston, R. C., Wilson, A. F. and Bailey-Wilson, J. E. (1989). A more powerful robust sib-pair test of linkage for quantitative traits. Genet Epidemiol, 6, 435–49CrossRefGoogle ScholarPubMed
Amos, C. I., Gu, X., Chen, J. and Davis, B. R. (2000). Least squares estimation of variance components for linkage. Genet Epidemiol, 19, S1–S73.0.CO;2-0>CrossRefGoogle ScholarPubMed
Arya, R., Duggirala, R., Jenkinson, C. P., Almasy, L., Blangero, J., O'Connell, P. and Stern, M. P. (2004). Evidence of a novel quantitative-trait locus for obesity on chromosome 4p in Mexican Americans. Am J Hum Genet, 74, 272–82CrossRefGoogle ScholarPubMed
Begleiter, H., Porjesz, B., Reich, T., Edenberg, H. J., Goate, A., Blangero, J., Almasy, L., Foroud, T., Eerdewegh, P., Polich, J., Rohrbaugh, J., Kuperman, S., Bauer, L. O., O'Connor, S. J., Chorlian, D. B., Li, T. K., Conneally, P. M., Hesselbrock, V., Rice, J. P., Schuckit, M. A., Cloninger, R., Nurnberger, J., Crowe, R. and Bloom, F. E. (1998). Quantitative trait loci analysis of human event-related brain potentials: P3 voltage. Electroencephalogr Clin Neurophysiol, 108, 244–50CrossRefGoogle ScholarPubMed
Beaty, T. H., Self, S. G., Liang, K. Y., Connolly, M. A., Chase, G. A. and Kwiterovich, P. O. (1985). Use of robust variance components models to analyze triglyceride data in families. Ann Hum Genet, 49, 315–28CrossRefGoogle Scholar
Blangero, J. (1993). Statistical genetic approaches to human adaptability. Hum Biol, 65, 941–66Google ScholarPubMed
Blangero, J. (1995). Genetic analysis of a common oligogenic trait with quantitative correlates: Summary of GAW9 results. Genet Epidemiol, 12, 689–706CrossRefGoogle ScholarPubMed
Blangero, J. (2004). Localization and identification of human quantitative trait loci: King Harvest has surely come. Curr Opin Genet Dev, 14, 233–40CrossRefGoogle Scholar
Blangero, J. and Almasy, L. (1997). Multipoint oligogenic linkage analysis of quantitative traits. Genet Epidemiol, 14, 959–643.0.CO;2-K>CrossRefGoogle ScholarPubMed
Blangero, J., Williams, J. T. and Almasy, L. (2000a). Quantitative trait locus mapping using human pedigrees. Hum Biol, 72, 35–62Google Scholar
Blangero, J., Williams, J. T. and Almasy, L. (2000b). Robust LOD scores for variance component-based linkage analysis. Genet Epidemiol, 19 (Suppl 1), S8–S143.0.CO;2-Y>CrossRefGoogle Scholar
Blangero, J., Williams, J. T. and Almasy, L. (2001). Variance component methods for detecting complex trait loci. Adv Genet, 42, 151–81Google ScholarPubMed
Blangero, J., Williams, J. T. and Almasy, L. (2003). Novel family-based approaches to genetic risk in thrombosis. J Thromb Haemost, 1, 1391–97CrossRefGoogle ScholarPubMed
Blangero, J., Williams, J. T., Iturria, S. J. and Almasy, L. (1999). Oligogenic model selection using the Bayesian Information Criterion: linkage analysis of the P300 Cz event-related brain potential. Genet Epidemiol, 17, S67–S72CrossRefGoogle Scholar
Blangero, J., MacCluer, J. W., Kammerer, C. M., Mott, G. E., Dyer, T. D. and McGill, , H. C. Jr, . (1990). Genetic analysis of apolipoprotein A-I in two dietary environments. Am J Hum Genet, 47, 414–28Google ScholarPubMed
Borecki, I. B. and Province, M. A. (1999). The impact of marker allele frequency misspecification in variance components quantitative trait locus analysis using sibship data. Genet Epidemiol, 17, S73–S77CrossRefGoogle ScholarPubMed
Bouchard, C., Rankinen, T., Chagnon, Y. C., Rice, T., Perusse, L., Gagnon, J., Borecki, I., An, P., Leon, A. S., Skinner, J. S., Wilmore, J. H., Province, M. and Rao, D. C. (2000). Genomic scan for maximal oxygen uptake and its response to training in the HERITAGE Family Study. J Appl Physiol, 88, 551–9CrossRefGoogle ScholarPubMed
Buil, A., Soria, J. M., Souto, J. C., Almasy, L., Lathrop, M., Blangero, J. and Fontcuberta, J. (2004). Protein C levels are regulated by a quantitative trait locus on chromosome 16: results from the Genetic Analysis of Idiopathic Thrombophilia (GAIT) Project. Arterioscler Thromb Vasc Biol, 24, 1321–5CrossRefGoogle ScholarPubMed
Broeckel, U., Hengstenberg, C., Mayer, B., Holmer, S., Martin, L. J., Comuzzie, A. G., Blangero, J., Nurnberg, P., Reis, A., Riegger, G. A., Jacob, H. J. and Schunkert, H. (2002). A comprehensive linkage analysis for myocardial infarction and its related risk factors. Nat Genet, 30, 210–14CrossRefGoogle ScholarPubMed
Burton, P. R., Palmer, L. J., Jacobs, K., Keen, K. J., Olson, J. M. and Elston, R. C. (2000). Ascertainment adjustment: where does it take us?Am J Hum Genet, 67, 1505–14CrossRefGoogle Scholar
Burton, P. R., Tiller, K. J., Gurrin, L. C., Cookson, W. O., Musk, A. W. and Palmer, L. J. (1999). Genetic variance components analysis for binary phenotypes using generalized linear mixed models (GLMMs) and Gibbs sampling. Genet Epidemiol, 17, 118–403.0.CO;2-V>CrossRefGoogle ScholarPubMed
Cai, G., Cole, S. A., Freeland-Graves, J. H., MacCluer, J. W., Blangero, J. and Comuzzie, A. G. (2004a). Principal component for metabolic syndrome risk maps to chromosome 4p in Mexican Americans: the San Antonio Family Heart Study. Hum Biol, 76, 651–65CrossRefGoogle Scholar
Cai, G., Cole, S. A., Freeland-Graves, J. H., MacCluer, J. W., Blangero, J. and Comuzzie, A. G. (2004b). Genome-wide scans reveal quantitative trait Loci on 8p and 13q related to insulin action and glucose metabolism: the San Antonio Family Heart Study. Diabetes, 53, 1369–74CrossRefGoogle Scholar
Chagnon, Y. C., Borecki, I. B., Perusse, L., Roy, S., Lacaille, M., Chagnon, M., Ho-Kim, M. A., Rice, T., Province, M. A., Rao, D. C. and Bouchard, C. (2000). Genome-wide search for genes related to the fat-free body mass in the Quebec family study. Metabolism, 49, 203–7CrossRefGoogle ScholarPubMed
Cloninger, C. R., Eerdewegh, P., Goate, A., Edenberg, H. J., Blangero, J., Hesselbrock, V., Reich, T., Nurnberger, Jr J., Schuckit, M., Porjesz, B., Crowe, R., Rice, J. P., Foroud, T., Przybeck, T. R., Almasy, L., Bucholz, K., Wu, W., Shears, S., Carr, K., Crose, C., Willig, C., Zhao, J., Tischfield, J. A., Li, T. K., Conneally, P. M. and Begleiter, H. (1998). Anxiety proneness linked to epistatic loci in genome scan of human personality traits. Am J Med Genet, 81, 313–173.0.CO;2-U>CrossRefGoogle Scholar
Comuzzie, A. G., Hixson, J. E., Almasy, L., Mitchell, B. D., Mahaney, M. C., Dyer, T. D., Stern, M. P., MacCluer, J.W. and Blangero, J. (1997). A major quantitative trait locus determining serum leptin levels and fat mass is located on human chromosome 2. Nat Genet, 15, 273–5CrossRefGoogle Scholar
Comuzzie, A. G. and Williams, J. T. (1999). Correcting for ascertainment bias in the COGA data set. Genet Epidemiol, 17, S109–S114CrossRefGoogle ScholarPubMed
Cotterman, C. W. (1940). A calculus for statistico-genetics. Unpublished Ph.D. dissertation, Ohio State University, Columbus, OH.
Czerwinski, S. A., Williams, J. T., Demerath, E. W., Towne, B., Siervogel, R. M. and Blangero, J. (2001). Does accounting for mitochondrial genetic variation improve the fit of genetic models?Genet Epidemiol, 21 (Suppl 1), S779–S782CrossRefGoogle ScholarPubMed
Andrade, M. and Amos, C. I. (2000). Ascertainment issues in variance components models. Genet Epidemiol, 19, 333–443.0.CO;2-#>CrossRefGoogle ScholarPubMed
Andrade, M., Amos, C. I. and Thiel, T. J. (1999). Methods to estimate genetic components of variance for quantitative traits in family studies. Genet Epidemiol, 17, 64–763.0.CO;2-M>CrossRefGoogle ScholarPubMed
Andrade, M., Thiel, T. J., Yu, L. and Amos, C. I. (1997). Assessing linkage on chromosome 5 using components of variance approach: univariate versus multivariate. Genet Epidemiol, 14, 773–83.0.CO;2-L>CrossRefGoogle ScholarPubMed
Andrade, M., Gueguen, R., Visvikis, S., Sass, C., Siest, G. and Amos, C. I. (2002). Ex-tension of variance components approach to incorporate temporal trends and longitudinal pedigree data analysis. Genet Epidemiol, 22(3), 221–32CrossRefGoogle Scholar
Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). J Roy Stat Soc Ser B, 39, 1–38Google Scholar
Wan, A. T., Arnett, D. K., Atwood, L. D., Province, M. A., Lewis, C. E., Hunt, S. C. and Eckfeldt, J. (2001). A genome scan for renal function among hypertensives: the HyperGEN study. Am J Hum Genet, 68, 136–44Google Scholar
Diego, V. P., Almasy, L., Dyer, T. D., Soler, J. M. and Blangero, J. (2003). Strategy and model building in the fourth dimension: a null model for genotype × age interaction as a Gaussian stationary stochastic process. BMC Genet, 4 (Suppl 1), S34.CrossRefGoogle ScholarPubMed
Duggirala, R., Blangero, J., Almasy, L., Dyer, T. D., Williams, K. L., Leach, R. J., O'Connell, P. and Stern, M. P. (1999). Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. Am J Hum Genet, 64, 1127–40CrossRefGoogle ScholarPubMed
Duggirala, R., Blangero, J., Almasy, L., Dyer, T. D., Williams, K. L., Leach, R. J., O'Connell, P. and Stern, M. P. (2000). A major susceptibility locus influencing plasma triglyceride concentrations is located on chromosome 15q in Mexican Americans. Am J Hum Genet, 66, 1237–45CrossRefGoogle Scholar
Duggirala, R., Stern, M. P., Mitchell, B. D., Reinhart, L. J., Shipman, P. A., Uresandi, O. C., Chung, W. K., Leibel, R. L., Hales, C. N., O'Connell, P. and Blangero, J. (1996). Quantitative variation in obesity-related traits and insulin precursors linked to the OB gene region on human chromosome 7. Am J Hum Genet, 59, 694–703Google ScholarPubMed
Duggirala, R., Williams, J. T., Williams-Blangero, S. and Blangero, J. (1997). A variance component approach to dichotomous trait linkage analysis using a threshold model. Genet Epidemiol, 14, 987–923.0.CO;2-G>CrossRefGoogle ScholarPubMed
Dupuis, J., Brown, P. O. and Siegmund, D. (1995). Statistical methods for linkage analysis of complex traits from high-resolution maps of identity by descent. Genetics, 140, 843–56Google ScholarPubMed
Dyer, T. D., Blangero, J., Williams, J. T., Göring, H. H. H. and Mahaney, M. C. (2001). The effect of pedigree complexity on quantitative trait linkage analysis. Genet Epidemiol, 21 (Suppl 1), S236–S243CrossRefGoogle ScholarPubMed
Eaves, L. J., Neale, M. C. and Maes, H. (1996). Multivariate multipoint linkage analysis of quantitative trait loci. Behav Genet, 26, 519–25CrossRefGoogle ScholarPubMed
Ekstrom, C. T. (2004). Multipoint linkage analysis of quantitative traits on sex-chromosomes. Genet Epidemiol, 26, 218–30CrossRefGoogle ScholarPubMed
Elston, R. C., Buxbaum, S., Jacobs, K. B. and Olson, J. M. (2000). Haseman and Elston revisited. Genet Epidemiol, 19, 1–173.0.CO;2-E>CrossRefGoogle ScholarPubMed
Ertekin-Taner, N., Graff-Radford, N., Younkin, L. H., Eckman, C., Baker, M., Adamson, J., Ronald, J., Blangero, J., Hutton, M. and Younkin, S. G. (2000). Linkage of plasma Aβ42 to a quantitative locus on chromosome 10 in late-onset Alzheimer's disease pedigrees. Science, 290(5500), 2303–4CrossRefGoogle ScholarPubMed
Fulker, D. W. and Cherny, S. S. (1996). An improved multipoint sib-pair analysis of quantitative traits. Behav Genet, 26, 527–32CrossRefGoogle ScholarPubMed
Fulker, D. W., Cherny, S. S., Sham, P. C. and Hewitt, J. K. (1999). Combined linkage and association sib-pair analysis for quantitative traits. Am J Hum Genet, 64(1), 259–67CrossRefGoogle Scholar
Gelbert, L. M. and Gregg, R.E. (1997). Will genetics really revolutionize the drug discovery process?Curr Opin Biotechnol, 8, 669–74CrossRefGoogle ScholarPubMed
Gessler, D. D. and Xu, S. (1996). Using the expectation or the distribution of the identity by descent for mapping quantitative trait loci under the random model. Am J Hum Genet, 59, 1382–90Google ScholarPubMed
Goldgar, D. E. (1990). Multipoint analysis of human quantitative genetic variation. Am J Hum Genet, 47, 957–67Google ScholarPubMed
Göring, H. H. H., Williams, J. T. and Blangero, J. (2001). Linkage analysis of quantitative traits in randomly ascertained pedigrees: comparison of penetrance-based and variance component analysis. Genet Epidemiol, 21 (Suppl 1), S783–S788CrossRefGoogle ScholarPubMed
Gu, C. and Rao, D. C. (1997). A linkage strategy for detection of human quantitative-trait loci. I. Generalized relative risk ratios and power of sib pairs with extreme trait values. Am J Hum Genet, 61, 210–210Google ScholarPubMed
Gu, C., Todorov, A. and Rao, D. C. (1996). Combining extremely concordant sibpairs with extremely discordant sibpairs provides a cost effective way to linkage analysis of quantitative trait loci. Genet Epidemiol, 13, 513–333.0.CO;2-1>CrossRefGoogle ScholarPubMed
Hanson, R. L., Kobes, S., Lindsay, R. S. and Knowler, W. C. (2001). Assessment of parent-of-origin effects in linkage analysis of quantitative traits. Am J Hum Genet, 68, 951–62CrossRefGoogle ScholarPubMed
Hanson, R. L., Ehm, M. G., Pettitt, D. J., Prochazka, M., Thompson, D. B., Timberlake, D., Foroud, T., Kobes, S., Baier, L., Burns, D. K., Almasy, L., Blangero, J., Garvey, W. T., Bennett, P. H. and Knowler, W. C. (1998). An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians. Am J Hum Genet, 63, 1130–8CrossRefGoogle ScholarPubMed
Haseman, J. K. and Elston, R. C. (1972). The investigation of linkage between a quantitative trait and a marker locus. Behav Genet, 2, 3–19CrossRefGoogle Scholar
Heath, S. C. (1997). Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet, 61, 748–60CrossRefGoogle ScholarPubMed
Heath, S. C., Snow, G. L., Thompson, E. A., Tseng, C. and Wijsman, E. M. (1997). MCMC segregation and linkage analysis. Genet Epidemiol, 14, 1011–163.0.CO;2-L>CrossRefGoogle ScholarPubMed
Hixson, J. E. and Blangero, J. (2000). Genomic searches for genes that influence atherosclerosis and its risk factors. Ann N Y Acad Sci, 902, 1–7CrossRefGoogle ScholarPubMed
Hoeschele, I., Uimari, P., Grignola, F. E., Zhang, Q. and Gage, K. M. (1997). Advances in statistical methods to map quantitative trait loci in outbred populations. Genetics, 147, 1445–57Google ScholarPubMed
Hopper, J. L. and Mathews, J. D. (1982). Extensions to multivariate normal models for pedigree analysis. Ann Hum Genet, 46, 373–83CrossRefGoogle ScholarPubMed
Hsueh, W. C., Mitchell, B. D., Schneider, J. L., St Jean, P. L., Pollin, T. I., Ehm, M. G., Wagner, M. J., Burns, D. K., Sakul, H., Bell, C. J. and Shuldiner, A. R. (2001). Genome-wide scan of obesity in the old order amish. J Clin Endocrinol Metab, 86, 1199–1205Google ScholarPubMed
Hsueh, W. C., Mitchell, B. D., Schneider, J. L., Wagner, M. J., Bell, C. J., Nanthakumar, E. and Shuldiner, A. R. (2000). QTL influencing blood pressure maps to the region of PPH1 on chromosome 2q31–34 in Old Order Amish. Circulation, 101, 2810–16CrossRefGoogle ScholarPubMed
Imperatore, G., Knowler, W. C., Pettitt, D. J., Kobes, S., Fuller, J. H., Bennett, P. H. and Hanson, R. L. (2000). A locus influencing total serum cholesterol on chromosome 19p: results from an autosomal genomic scan of serum lipid concentrations in Pima Indians. Arterioscler Thromb Vasc Biol, 20, 2651–6CrossRefGoogle ScholarPubMed
Iturria, S. J. and Blangero, J. (2000). An EM algorithm for obtaining maximum likelihood estimates in the multi-phenotype variance components linkage model. Ann Hum Genet, 64, 349–62CrossRefGoogle Scholar
Iturria, S. J., Williams, J. T., Almasy, L., Dyer, T. D. and Blangero, J. (1999). An empirical test of the significance of an observed quantitative trait locus effect that preserves additive genetic variation. Genet Epidemiol, 17 (Suppl 1), S169–S173CrossRefGoogle ScholarPubMed
Jansen, R. C., Johnson, D. L. and Arendonk, J. A. (1998). A mixture model approach to the mapping of quantitative trait loci in complex populations with an application to multiple cattle families. Genetics, 148, 391–9Google ScholarPubMed
Jaquish, C. E., Blangero, J., Haffner, S. M., Stern, M. P. and MacCluer, J. W. (1996). Quantitative genetics of dehydroepiandrosterone sulfate and its relation to possible cardiovascular disease risk factors in Mexican Americans. Hum Hered, 46, 301–9CrossRefGoogle ScholarPubMed
Jaquish, C. E., Leland, M. M., Dyer, T., Towne, B. and Blangero, J. (1997). Ontogenetic changes in genetic regulation of fetal morphometrics in baboons (Papio hamadryas subspp.). Hum Biol, 69, 831–48Google Scholar
Jiang, C. and Zeng, Z. B. (1995). Multiple trait analysis of genetic mapping for quantitative trait loci. Genetics, 140, 1111–27Google ScholarPubMed
Kammerer, C. M., Schneider, J. L., Cole, S. A., Hixson, J. E., Samollow, P. B., O'Connell, J. R., Perez, R., Dyer, T. D., Almasy, L., Blangero, J., Bauer, R.L. and Mitchell, B. D. (2003). Quantitative trait loci on chromosomes 2p, 4p, and 13q influence bone mineral density of the forearm and hip in Mexican Americans. J Bone Miner Res, 18, 2245–52CrossRefGoogle ScholarPubMed
Kissebah, A. H., Sonnenberg, G. E., Myklebust, J., Goldstein, M., Broman, K., James, R. G., Marks, J. A., Krakower, G. R., Jacob, H. J., Weber, J., Martin, L., Blangero, J. and Comuzzie, A. G. (2000). Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc Natl Acad Sci USA, 97, 14478–83CrossRefGoogle ScholarPubMed
Korol, A. B., Ronin, Y. I. and Kirzhner, V. M. (1995). Interval mapping of quantitative trait loci employing correlated trait complexes. Genetics, 140, 1137–47Google Scholar
Kruglyak, L. and Lander, E. S. (1995). Complete multipoint sib-pair analysis of qualitative and quantitative traits. Am J Hum Genet, 57, 439–54Google ScholarPubMed
Kruglyak, L., Daly, M. J., Reeve-Daly, M. P. and Lander, E. S. (1996). Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet, 58, 1347–63Google Scholar
Lander, E. S. and Schork, N. J. (1994). Genetic dissection of complex traits. Science, 265, 2037–48CrossRefGoogle ScholarPubMed
Lange, K. (1978). Central limit theorems for pedigrees. J Math Bio, 6, 59–66CrossRefGoogle Scholar
Lange, K. (1997). Mathematical and Statistical Methods for Genetic Analysis. New York: Springer-Verlag.CrossRefGoogle Scholar
Lange, K. and Boehnke, M. (1983). Extensions to pedigree analysis. IV. Covariance components models for multivariate traits. Am J Med Genet, 14, 513–24CrossRefGoogle ScholarPubMed
Lange, K., Little, R. J. A. and Taylor, J. M. G. (1989). Robust statistical modeling using the t distribution. JASA, 84, 881–96Google Scholar
Lange, K., Weeks, D. and Boehnke, M. (1988). Programs for pedigree analysis: Mendel, Fisher, and dGene. Genet Epidemiol, 5, 471–2CrossRefGoogle ScholarPubMed
Levy, D., DeStefano, A. L., Larson, M. G., O'Donnell, C. J., Lifton, R. P., Gavras, H., Cupples, L. A. and Myers, R. H. (2000). Evidence for a gene influencing blood pressure on chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in subjects from the Framingham Heart Study. Hypertension, 36, 477–83CrossRefGoogle ScholarPubMed
Lewis, C. M. and Kort, E. N. (1997). Multilocus quantitative trait analysis using the multipoint identity-by-descent method. Genet Epidemiol, 14, 839–443.0.CO;2-O>CrossRefGoogle ScholarPubMed
Mahaney, M. C., Almasy, L., Rainwater, D. L., VandeBerg, J. L., Cole, S. A., Hixson, J. E., Blangero, J. and MacCluer, J. W. (2003). A quantitative trait locus on chromosome 16q influences variation in plasma HDL-C levels in Mexican Americans. Arterioscler Thromb Vasc Biol, 23, 339–45CrossRefGoogle ScholarPubMed
Martin, L. J., Comuzzie, A. G., North, K. E., Williams, J. T. and Blangero, J. (2001). The utility of Bayesian model averaging for detecting known oligogenic effects. Genet Epidemiol, 21 (Suppl 1), S789–S793CrossRefGoogle ScholarPubMed
Martin, L. J., Cole, S. A., Hixson, J. E., Blangero, J. and Comuzzie, A. G. (2002a). Genotype by smoking interaction for leptin levels in the San Antonio Family Heart Study. Genet Epidemiol, 22(2), 105–15CrossRefGoogle Scholar
Martin, L. J., Comuzzie, A. G., Dupont, S., Vionnet, N., Dina, C., Gallina, S., Houari, M., Blangero, J. and Froguel, P. (2002b). A quantitative trait locus influencing type 2 diabetes susceptibility maps to a region on 5q in an extended French family. Diabetes, 51, 3568–72CrossRefGoogle Scholar
Mathias, R. A., Freidhoff, L. R., Blumenthal, M. N., Meyers, D. A., Lester, L., King, R., Xu, J. F., Solway, J., Barnes, K. C., Pierce, J., Stine, O. C., Togias, A., Oetting, W., Marshik, P. L., Hetmanski, J. B., Huang, S. K., Ehrlich, E., Dunston, G. M., Malveaux, F., Banks-Schlegel, S., Cox, N. J., Bleecker, E., Ober, C., Beaty, T. H. and Rich, S. S. (2001). Genome-wide linkage analyses of total serum IgE using variance components analysis in asthmatic families. Genet Epidemiol, 20, 340–55CrossRefGoogle ScholarPubMed
Meuwissen, T. H. and Goddard, M. E. (1997). Estimation of effects of quantitative trait loci in large complex pedigrees. Genetics, 146, 409–16Google ScholarPubMed
Mitchell, B. D., Ghosh, S., Schneider, J. L., Birznieks, G. and Blangero, J. (1997). Power of variance component linkage analysis to detect epistasis. Genet Epidemiol, 14, 1017–223.0.CO;2-L>CrossRefGoogle Scholar
Mitchell, B. D., Cole, S. A., Comuzzie, A. G., Almasy, L., Blangero, J., MacCluer, J. W. and Hixson, J. E. (1999). A quantitative trait locus influencing BMI maps to the region of the beta-3 adrenergic receptor. Diabetes, 48, 1863–7CrossRefGoogle ScholarPubMed
Mitchell, B. D., Cole, S. A., Bauer, R. L., Iturria, S. J., Rodriguez, E. A., Blangero, J., MacCluer, J. W. and Hixson, J. E. (2000a). Genes influencing variation in serum osteocalcin concentrations are linked to markers on chromosomes 16q and 20q. J Clin Endocrinol Metab, 85, 1362–6Google Scholar
Mitchell, B. D., Cole, S. A., Hsueh, W. C., Comuzzie, A. G., Blangero, J., MacCluer, J. W. and Hixson, J. E. (2000b). Linkage of serum insulin concentrations to chromosome 3p in Mexican Americans. Diabetes, 49, 513–6CrossRefGoogle Scholar
North, K. E., Rose, K. M., Borecki, I. B., Oberman, A., Hunt, S. C., Miller, M. B., Blangero, J., Almasy, L. and Pankow, J. S. (2004). Evidence for a gene on chromosome 13 influencing postural systolic blood pressure change and body mass index. Hypertension, 43, 780–4CrossRefGoogle ScholarPubMed
North, K. E., Miller, M. B., Coon, H., Martin, L. J., Peacock, J. M., Arnett, D., Zhang, B., Province, M., Oberman, A., Blangero, J., Almasy, L., Ellison, R. C. and Heiss, G. (2005). Evidence for a gene influencing fasting LDL cholesterol and triglyceride levels on chromosome 21q. Atherosclerosis, 179, 119–25CrossRefGoogle ScholarPubMed
Olson, J. M. (1995). Robust multipoint linkage analysis: an extension of the Haseman-Elston method. Genet Epidemiol, 12, 177–93CrossRefGoogle ScholarPubMed
Olson, J. M. and Wijsman, E. M. (1993). Linkage between quantitative trait and marker loci: methods using all relative pairs. Genet Epidemiol, 10, 87–102CrossRefGoogle ScholarPubMed
Page, G. P., Amos, C. I. and Boerwinkle, E. (1998). The quantitative LOD score: test statistic and sample size for exclusion and linkage of quantitative traits in human sibships. Am J Hum Genet, 62, 962–8CrossRefGoogle ScholarPubMed
Palmer, L. J., Tiller, K. J. and Burton, P. R. (1999). Genome-wide linkage analysis using genetic variance components of alcohol dependency-associated censored and continuous traits. Genet Epidemiol, 17, S283–S288CrossRefGoogle ScholarPubMed
Pankow, J. S., Rose, K. M., Oberman, A., Hunt, S. C., Atwood, L.D., Djousse, L., Province, M. A. and Rao, D. C. (2000). Possible locus on chromosome 18q influencing postural systolic blood pressure changes. Hypertension, 36, 471–6CrossRefGoogle ScholarPubMed
Perusse, L., Rice, T., Chagnon, Y. C., Despres, J. P., Lemieux, S., Roy, S., Lacaille, M., Ho-Kim, M. A., Chagnon, M., Province, M. A., Rao, D. C. and Bouchard, C. (2001). A genome-wide scan for abdominal fat assessed by computed tomography in the Quebec Family Study. Diabetes, 50, 614–21CrossRefGoogle ScholarPubMed
Pratt, S. C., Daly, M. J. and Kruglyak, L. (2000). Exact multipoint quantitative-trait linkage analysis in pedigrees by variance components. Am J Hum Genet, 66, 1153–7CrossRefGoogle ScholarPubMed
Rainwater, D. L., Almasy, L., Blangero, J., Cole, S. A., VandeBerg, J. L., MacCluer, J. W. and Hixson, J. E. (1999). A genome search identifies major quantitative trait loci on human chromosomes 3 and 4 that influence cholesterol concentrations in small LDL particles. Arterioscler Thromb Vasc Biol, 19, 777–83CrossRefGoogle Scholar
Rainwater, D. L., Mahaney, M. C., VandeBerg, J. L., Brush, G., Almasy, L., Blangero, J., Dyke, B., Hixson, J. E., Cole, S. A. and MacCluer, J. W. (2004). A quantitative trait locus influences coordinated variation in measures of ApoB-containing lipoproteins. Atherosclerosis, 176, 379–86CrossRefGoogle ScholarPubMed
Rice, T., Rankinen, T., Province, M. A., Chagnon, Y. C., Perusse, L., Borecki, I. B., Bouchard, C. and Rao, D. C. (2000). Genome-wide linkage analysis of systolic and diastolic blood pressure: the Quebec Family Study. Circulation, 102, 1956–63CrossRefGoogle ScholarPubMed
Risch, N. and Zhang, H. (1995). Extreme discordant sib pairs for mapping quantitative trait loci in humans. Science, 268, 1584–9CrossRefGoogle ScholarPubMed
Schork, N. J. (1993) Extended multipoint identity-by-descent analysis of human quantitative traits: efficiency, power and modeling considerations. Am J Hum Genet, 53, 1306–19Google Scholar
Scurrah, K. J., Palmer, L. J. and Burton, P. R. (2000). Variance components analysis for pedigree-based censored survival data using generalized linear mixed models (GLMMs) and Gibbs sampling in BUGS. Genet Epidemiol, 19, 127–483.0.CO;2-S>CrossRefGoogle ScholarPubMed
Self, S. G. and Liang, K. Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. J Am Stat Assoc, 82, 605–10CrossRefGoogle Scholar
Sham, P. C., Zhao, J. H., Cherny, S. S. and Hewitt, J. K. (2000a). Variance-components QTL linkage analysis of selected and non-normal samples: conditioning on trait values. Genet Epidemiol, 19, S22–S283.0.CO;2-S>CrossRefGoogle Scholar
Sham, P. C., Cherny, S. S., Purcell, S. and Hewitt, J. K. (2000b). Power of linkage versus association analysis of quantitative traits, by use of variance-components models, for sibship data. Am J Hum Genet, 66, 1616–30CrossRefGoogle Scholar
Shearman, A. M., Ordovas, J. M., Cupples, L. A., Schaefer, E. J., Harmon, M. D., Shao, Y., Keen, J. D., DeStefano, A. L., Joost, O., Wilson, P. W., Housman, D. E. and Myers, R. H. (2000). Evidence for a gene influencing the TG/HDL-C ratio on chromosome 7q32.3-qter: a genome-wide scan in the Framingham study. Hum Mol Genet, 9, 1315–20CrossRefGoogle Scholar
Soler, J. M. and Blangero, J. (2003). Longitudinal familial analysis of blood pressure involving parametric (co)variance functions. BMC Genet, 4 (Suppl 1), S87.CrossRefGoogle ScholarPubMed
Sonnenberg, G. E., Krakower, G. R., Martin, L. J., Olivier, M., Kwitek, A. E., Comuzzie, A. G., Blangero, J. and Kissebah, A. H. (2004). Genetic determinants of obesity-related lipid traits. J Lipid Res, 45, 610–15CrossRefGoogle ScholarPubMed
Soria, J. M., Almasy, L., Souto, J. C., Tirado, I., Borell, M., Mateo, J., Slifer, S., Stone, W., Blangero, J. and Fontcuberta, J. (2000). Linkage analysis demonstrates that the prothrombin G20210A mutation jointly influences plasma prothrombin levels and risk of thrombosis. Blood, 95, 2780–5Google ScholarPubMed
Soria, J. M., Almasy, L., Souto, J. C., Bacq, D., Buil, A., Faure, A., Martinez-Marchan, E., Mateo, J., Borrell, M., Stone, W., Lathrop, M., Fontcuberta, J. and Blangero, J. (2002). A quantitative-trait locus in the human factor XII gene influences both plasma factor XII levels and susceptibility to thrombotic disease. Am J Hum Genet, 70, 567–74CrossRefGoogle ScholarPubMed
Soria, J. M., Almasy, L., Souto, J. C., Buil, A., Martinez-Sanchez, E., Mateo, J., Borrell, M., Stone, W. H., Lathrop, M., Fontcuberta, J. and Blangero, J. (2003). A new locus on chromosome 18 that influences normal variation in activated protein C resistance phenotype and factor VIII activity and its relation to thrombosis susceptibility. Blood, 101, 163–7CrossRefGoogle ScholarPubMed
Souto, J. C., Blanco-Vaca, F., Soria, J. M., Buil, A., Almasy, L., Ordonez-Llanos, J., Martin-Campos, J. M., Lathrop, M., Stone, W., Blangero, J. and Fontcuberta, J. (2005). A genomewide exploration suggests a new candidate gene at chromosome 11q23 as the major determinant of plasma homocysteine levels: results from the GAIT project. Am J Hum Genet, 76, 925–33CrossRefGoogle ScholarPubMed
Stern, M., Duggirala, R., Mitchell, B., Reinhart, J. L., Shivakumar, S., Shipman, P. A., Uresandi, O. C., Benavides, E., Blangero, J. and O'Connell, P. (1996). Evidence for linkage of regions on chromosomes 6 and 11 to plasma glucose concentrations in Mexican Americans. Genome Res, 6, 724–34CrossRefGoogle ScholarPubMed
Stoesz, M. R., Cohen, J. C., Mooser, V., Marcovina, S. and Guerra, R. (1997). Extension of the Haseman-Elston method to multiple alleles and multiple loci: theory and practice for candidate genes. Ann Hum Genet, 61, 263–74Google ScholarPubMed
Terwilliger, J. D. (2001). On the resolution and feasibility of genome scanning approaches. Adv Genet, 42, 351–91Google ScholarPubMed
Tiwari, H. K. and Elston, R. C. (1997). Linkage of multilocus components of variance to polymorphic markers. Ann Hum Genet, 61, 253–61CrossRefGoogle ScholarPubMed
Todorov, A. A., Province, M. A., Borecki, I. B. and Rao, D. C. (1997). Trade-off between sibship size and sampling scheme for detecting quantitative trait loci. Hum Hered, 47, 1–5CrossRefGoogle ScholarPubMed
Towne, B., Siervogel, R. M. and Blangero, J. (1997). Effects of genotype-by-sex interaction on quantitative trait linkage analysis. Genet Epidemiol, 14, 1053–83.0.CO;2-G>CrossRefGoogle ScholarPubMed
Towne, B., Almasy, L., Siervogel, R. M. and Blangero, J. (1999). Effects of genotype × sex interaction on linkage analysis of visual event-related evoked potentials. Genet Epidemiol, 17, S355–S360CrossRefGoogle Scholar
Towne, B., Parks, J. S., Brown, M. R., Siervogel, R. M., Roche, A. F. and Blangero, J. (2000). Longitudinal quantitative genetic analysis of childhood skeletal maturation. Genet Epidemiol, 19, 275.Google Scholar
Uimari, P. and Hoeschele, I. (1997). Mapping-linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms. Genetics, 146, 735–43Google ScholarPubMed
Uimari, P., Thaller, G. and Hoeschele, I. (1996). The use of multiple markers in a Bayesian method for mapping quantitative trait loci. Genetics, 143, 1831–42Google Scholar
Visscher, P. M., Haley, C. S., Heath, S. C., Muir, W. J. and Blackwood, D. H. (1999). Detecting QTLs for uni- and bipolar disorder using a variance component method. Psychiatr Genet, 9, 75–84CrossRefGoogle ScholarPubMed
Vogler, G. P., Tang, W., Nelson, T. L., Hofer, S. M., Grant, J. D., Tarantino, L. M. and Fernandez, J. R. (1997). A multivariate model for the analysis of sibship covariance structure using marker information and multiple quantitative traits. Genet Epidemiol, 14, 921–63.0.CO;2-N>CrossRefGoogle ScholarPubMed
Walder, K., Hanson, R. L., Kobes, S., Knowler, W. C. and Ravussin, E. (2000). An autosomal genomic scan for loci linked to plasma leptin concentration in Pima Indians. Int J Obes Relat Metab Disord, 24, 559–65CrossRefGoogle ScholarPubMed
Wan, Y., Andrade, M., Yu, L., Cohen, J. and Amos, C. I. (1998). Genetic linkage analysis using lognormal variance components. Ann Hum Genet, 62, 521–30CrossRefGoogle ScholarPubMed
Wang, J., Guerra, R. and Cohen, J. (1998). Statistically robust approaches for sib-pair linkage analysis. Ann Hum Genet, 62, 349–59CrossRefGoogle ScholarPubMed
Wang, J., Guerra, R. and Cohen, J. (1999). A statistically robust variance-components approach for quantitative trait linkage analysis. Ann Hum Genet, 63, 249–62CrossRefGoogle ScholarPubMed
Watanabe, R. M., Ghosh, S., Langefeld, C. D., Valle, T. T., Hauser, E. R., Magnuson, V. L., Mohlke, K. L., Silander, K., Ally, D. S., Chines, P., Blaschak-Harvan, J., Douglas, J. A., Duren, W. L., Epstein, M. P., Fingerlin, T. E., Kaleta, H. S., Lange, E. M., Li, C., McEachin, R. C., Stringham, H. M., Trager, E., White, P. P., Balow, Jr J., Birznieks, G., Chang, J. and Eldridge, W. (2000). The Finland-United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. II. An autosomal genome scan for diabetes-related quantitative-trait loci. Am J Hum Genet, 67, 1186–1200Google ScholarPubMed
Wijsman, E. M. and Amos, C. I. (1997). Genetic analysis of simulated oligogenic traits in nuclear families and extended pedigrees: summary of GAW10 contributions. Genet Epidemiol, 14, 719–353.0.CO;2-S>CrossRefGoogle ScholarPubMed
Williams, J. T. and Blangero, J. (1999a). Power of variance component linkage analysis to detect quantitative trait loci. Ann Hum Genet, 63, 545–63CrossRefGoogle Scholar
Williams, J. T. and Blangero, J. (1999b). Comparison of variance components and sibpair-based approaches to quantitative trait linkage analysis in unselected samples. Genet Epidemiol, 16, 113–343.0.CO;2-6>CrossRefGoogle Scholar
Williams, J. T. and Blangero, J. (1999c). Asymptotic power of likelihood-ratio tests for detecting quantitative trait loci using the COGA data. Genet Epidemiol, 17, S397–S402CrossRefGoogle Scholar
Williams, J. T. and Blangero, J. (2004). Power of variance component linkage analysis-II. Discrete traits. Ann Hum Genet, 68, 620–32CrossRefGoogle ScholarPubMed
Williams, J. T., Duggirala, R. and Blangero, J. (1997). Statistical properties of a variance-components method for quantitative trait linkage analysis in nuclear families and extended pedigrees. Genet Epidemiol, 14, 1065–703.0.CO;2-F>CrossRefGoogle ScholarPubMed
Williams, J. T., Begleiter, H., Porjesz, B., Edenberg, H. J., Foroud, T., Reich, T., Goate, A., Eerdewegh, P., Almasy, L. and Blangero, J. (1999a). Joint multipoint linkage analysis of multivariate qualitative and quantitative traits. II. Alcoholism and event-related potentials. Am J Hum Genet, 65, 1148–60CrossRefGoogle Scholar
Williams, J. T., Eerdewegh, P., Almasy, L. and Blangero, J. (1999b). Joint multipoint linkage analysis of multivariate qualitative and quantitative traits. I. Likelihood formulation and simulation results. Am J Hum Genet, 65, 1134–47CrossRefGoogle Scholar
Williams, J. T., North, K. E., Martin, L. J., Comuzzie, A. G., Göring, H. H. H. and Blangero, J. (2001). Distribution of LOD scores in oligogenic linkage analysis. Genet Epidemiol, 21 (Suppl 1), S805–S810CrossRefGoogle Scholar
Williams-Blangero, S., VandeBerg, J. L., Subedi, J., Aivaliotis, M. J., Rai, D. R., Upadhayay, R. P., Jha, B. and Blangero, J. (2002). Genes on chromosomes 1 and 13 have significant effects on Ascaris infection. Proc Natl Acad Sci USA, 99, 5533–8CrossRefGoogle ScholarPubMed
Wilson, A. F., Elston, R. C., Tran, L. D. and Siervogel, R. M. (1991). Use of the robust sib-pair method to screen for single-locus, multiple-locus, and pleiotropic effects: application to traits related to hypertension. Am J Hum Genet, 48, 862–72Google Scholar
Xu, S. (1998a). Iteratively reweighted least squares mapping of quantitative trait loci. Behav Genet, 28, 341–55CrossRefGoogle Scholar
Xu, S. (1998b). Mapping quantitative trait loci using multiple families of line crosses. Genetics, 148, 517–24Google Scholar
Xu, S. and Atchley, W. R. (1995). A random model approach to interval mapping of quantitative trait loci. Genetics, 141, 1189–97Google ScholarPubMed
Xu, S. and Atchley, W. R. (1996). Mapping quantitative trait loci for complex binary diseases using line crosses. Genetics, 143, 1417–24Google ScholarPubMed
Xu, J., Postma, D. S., Howard, T. D., Koppelman, G. H., Zheng, S. L., Stine, O. C., Bleecker, E. R. and Meyers, D. A. (2000a). Major genes regulating total serum immunoglobulin E levels in families with asthma. Am J Hum Genet, 67, 1163–73CrossRefGoogle Scholar
Xu, X., Weiss, S., Xu, X. and Wei, L. J. (2000b). A unified Haseman-Elston method for testing linkage with quantitative traits. Am J Hum Genet, 67, 1025–8CrossRefGoogle Scholar
Yi, N. and Xu, S. (2000a). Bayesian mapping of quantitative trait loci under the identity-by-descent-based variance component model. Genetics, 156, 411–22Google Scholar
Yi, N. and Xu, S. (2000b). Bayesian mapping of quantitative trait loci for complex binary traits. Genetics, 155, 1391–403Google Scholar
Yuan, B., Neuman, R., Duan, S. H., Weber, J. L., Kwok, P. Y., Saccone, N. L., Wu, J. S., Liu, K. Y. and Schonfeld, G. (2000). Linkage of a gene for familial hypobetalipoproteinemia to chromosome 3p21.1–22. Am J Hum Genet, 66, 1699–704CrossRefGoogle ScholarPubMed
Zeng, Z. B. (1993). Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA, 90, 10972–6CrossRefGoogle ScholarPubMed
Zeng, Z. B. (1994). Precision mapping of quantitative trait loci. Genetics, 136, 1457–68Google Scholar