Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-04-30T14:52:46.575Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2014

Seelye Martin
Affiliation:
University of Washington
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdalati, W., Zwally, H. J., Bindschadler, R., et al. (2010). The ICESat-2 laser altimetry mission. Proc. IEEE, 98, 735–751.CrossRefGoogle Scholar
Acker, J. G., & Leptoukh, G. (2007). Online analysis enhances use of NASA earth science data. Eos, Trans. AGU, 88(2), 14 and 17.CrossRefGoogle Scholar
Ackerman, S., Frey, R., Strabala, K., et al. (2010). Discriminating clear-sky from cloud with MODIS – Algorithm Theoretical Basis Document (MOD35), Version 6.1, ATBD-MOD-06, .
ACSPO (2010). Advanced Clear-Sky Processor for Ocean (ACSPO), Version 1.40, Interface Control Document, NOAA/NESDIS/OSDPD/SSD, .
Ahmad, Z., Franz, B. A., McClain, C. R., et al. (2010). New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances for the SeaWiFS and MODIS sensors over coastal regions and open oceans. Appl. Opt., 49(29), 5545–5560.CrossRefGoogle ScholarPubMed
Ahmed, S., Warren, H. R., Symonds, M. D., & Cox, R. P. (1990). The Radarsat System. IEEE Trans. Geosci. Remote Sens., 28, 598–602.CrossRefGoogle Scholar
Aiken, J., Moore, G. F., Trees, C. C., et al. (1995). The SeaWiFS CZCS-Type Pigment Algorithm. SeaWiFS Technical Report Series, Vol. 29, ed. Hooker, S. B. & Firestone, E. R., NASA Technical Memorandum 104566. Greenbelt, MD: NASA Goddard Space Flight Center.Google Scholar
Allianz (2012). Safety and shipping 1912–2012, from Titanic to Costa Concordia, , 63 pp.
Altimetry (2013). Radar altimetry tutorial, missions, .
Alvain, S., Moulin, C., Dandonneau, Y., et al. (2005). Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery. Deep-Sea Res. I, 52, 1989–2004.CrossRefGoogle Scholar
AMSR-E (2013). Advanced Microwave Scanning Radiometer – EOS, .
Anderson, G. P., Kneizys, F. X., Chetwynd, J. H., et al. (1995). FASCODE/MODTRAN/LOWTRAN: Past/present/future. In 18th Annual Review Conference on Atmospheric Transmission Models, 1995. Lexington, MA: Phillips Laboratories.
Anguelova, M. D. & Webster, F. (2006). Whitecap coverage from satellite measurements: A first step toward modeling the variability of oceanic whitecaps. J. Geophys. Res., 111, C03017.CrossRefGoogle Scholar
Antoine, D., d’Ortenzio, F., Hooker, S. B., et al. (2008). Assessment of uncertainty in the ocean reflectance determined by three satellite ocean color sensors (MERIS, SeaWiFS and MODIS-A) at an offshore site in the Mediterranean Sea (BOUSSOLE project). J. Geophys. Res., 113, C07013, .CrossRefGoogle Scholar
AOML (2012). The Global Drifter Program, .
Aquarius (2013a). NASA Goddard Space Flight Center, Aquarius, .
Aquarius (2013b). Key Aquarius facts, .
Argo (2012). Argo Floats, .
ASAR (2013a). ESA Envisat ASAR, .
ASAR (2013b). ESA observing the earth, ENVISAT's ASAR reveals extent of massive oil spill off Spanish coast, .
ASAR (2013c). ESA earthnet online, ASAR products, .
ASCAT (2013a). EUMETSAT ASCAT, .
ASCAT (2013b). JPL PO.DAAC, MetOp-B ASCAT Level-2 25-km ocean surface winds, .
ASCAT (2013c). ASCAT wind product user manual, version 1.13, .
ASF (2013a). Alaska Satellite Facility RADARSAT Geophysical Processing System, .
ASF (2013b). Alaska Satellite Facility SAR data center, .
Asrar, G., & Dozier, J. (1994). EOS: Science Strategy for the Earth Observing System. Woodbury, NY: AIP Press.Google Scholar
Assar, G. R. (2011). The enduring legacy of the Earth Observing System Part II: Creating a global observing system – challenges and opportunities. Earth Observer, 23(3), 4–14, .Google Scholar
Atlas, R., Hoffman, R. N., Ardizzone, J., et al. (2011) A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Amer. Meteor. Soc., 92, 157–174, .CrossRefGoogle Scholar
Atlas, R., Hoffman, R. N., Leidner, S. M., et al. (2001). The effects of marine winds from scatterometer data on weather analysis and forecasting. Bull. Amer. Meteor. Soc., 82, 1965–1990.2.3.CO;2>CrossRefGoogle Scholar
Attema, E. P. W. (1991). The active microwave instrument on-board the ERS-1 satellite. Proc. IEEE, 79, 791–799.CrossRefGoogle Scholar
Bailey, S. W., & Werdell, P. J. (2006). A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sens. Environ., 102, 12–23.CrossRefGoogle Scholar
Bailey, S. W., Hooker, S. B., Antoine, D., et al. (2008). Sources and assumptions for the vicarious calibration of ocean color satellite observations. Appl. Opt., 47(12), 2035–2045.CrossRefGoogle ScholarPubMed
Baker, M. E. (1997). Cloud microphysics and climate. Science, 276, 1072–1078.CrossRefGoogle Scholar
Balanis, C. A. (1982). Antenna Theory: Analysis and Design. New York: John Wiley.Google Scholar
Balch, W. M., & Byrne, C. F. (1994). Factors affecting the estimate of primary production from space. J. Geophys. Res., 99, 7555–7570.CrossRefGoogle Scholar
Balch, W. M., Drapeau, D. T., Cucci, T. L., et al. (1999). Optical backscattering by calcifying algae – separating the contribution by particulate inorganic and organic carbon fractions. J. Geophys. Res., 104, 1541–1558.CrossRefGoogle Scholar
Baldy, S. (1993). A generation – dispersion model of ambient and transient bubbles in the close vicinity of breaking waves. J. Geophys. Res., 98, 18277–18293.CrossRefGoogle Scholar
Band ratio algorithms (2010). Ocean color documents, .
Band reprocessing (2010). Ocean Color chlorophyll (OC) v6, .
Bannerman, K., Rodriguez, M. H., de Miranda, F. P., et al. (2009). Operational applications of RADARSAT-2 for the environmental monitoring of oil slicks in the Southern Gulf of Mexico. IEEE Trans. Geosci. Remote Sens. Symposium (IGARSS-2009), 3, 381–383.CrossRefGoogle Scholar
Barnes, R. A., Eplee, R. E., Schmidt, G. M., et al. (2001). Calibration of SeaWiFS. I. Direct techniques. Appl. Opt., 40, 6682–6700.CrossRefGoogle ScholarPubMed
Barnes, W. L., & Salomonson, V. V. (1993). MODIS: A global imaging spectroradiometer for the Earth Observing System. Crit. Rev. Opt. Sci. Technol., 47, 285–307.
Barnes, W. L., Pagano, T. S., & Salomonson, V. V. (1998). Prelaunch characteristics of the Moderate Imaging Spectroradiometer (MODIS) on EOS-AM1. IEEE Trans. Geosci. Remote Sens., 36, 1088–1100.CrossRefGoogle Scholar
Barrick, D. E., & Swift, C. T. (1980). The Seasat microwave instruments in historical perspective. IEEE J. Oceanic Eng., 5, 74–80.CrossRef
Barton, I. J. (1995). Satellite-derived sea surface temperatures: Current status. J. Geophys. Res., 100, 8777–8790.CrossRefGoogle Scholar
Beckley, B. D., Zelensky, N. P., Holmes, S. A., et al. (2010). Assessment of the Jason-2 extension to the TOPEX/Poseidon, Jason-1 sea-surface height time series for global mean sea level monitoring. Marine Geodesy, 33(S1), 447–471.CrossRefGoogle Scholar
Behrenfeld, M. J., & Falkowski, P. G. (1997a). Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr., 42, 1–20.CrossRefGoogle Scholar
Behrenfeld, M. J., & Falkowski, P. G. (1997b). A consumer's guide to phytoplankton primary productivity models. Limnol. Oceanogr., 42(7), 1479–1491.CrossRefGoogle Scholar
Behrenfeld, M. J., O’Malley, R. T., Siegel, D. A., et al. (2006a). Climate-driven trends in contemporary ocean productivity. Nature, 444, 752–755.CrossRefGoogle ScholarPubMed
Behrenfeld, M. J., Westberry, T. K., Boss, E. S., et al. (2009). Satellite-detected fluorescence reveals global physiology of ocean phytoplankton. Biogeoscience, 6(5), 779–794.CrossRefGoogle Scholar
Behrenfeld, M. J., Westberry, T. K., Boss, E. S., et al. (2006b). A comparison of global estimates of marine primary production from ocean color. Deep Sea Res., II, 53, 741–770.Google Scholar
Bernstein, R. L., & Chelton, D. B. (1985). Large-scale sea surface temperature variability from satellite and shipboard measurements. J. Geophys. Res., 90, 11619–11630.CrossRefGoogle Scholar
Bertiger, W. I., Bar-Sever, Y. E., Christensen, E. J., et al. (1994). GPS precise tracking of TOPEX/POSEIDON: results and implications. J. Geophys. Res., 99, 24449–24464.CrossRefGoogle Scholar
Bettenhausen, M. H., Smith, C. K., Bevilacqua, R. M., et al. (2006). A nonlinear optimization algorithm for WindSat wind vector retrievals. IEEE Trans. Geosci. Remote Sens., 44, 597–610, .CrossRefGoogle Scholar
Bi, L., Jung, J. A., Morgan, M. C., et al. (2011). Assessment of assimilating ASCAT surface wind retrievals in the NCEP global data assimilation system. Mon. Wea. Rev., 139, 3405–3421.CrossRefGoogle Scholar
Bindschadler, R. A., Born, G., Chase, R. R. P., et al. (1987). Altimetric System. Volume IIh, Earth Observing System Reports. Washington, DC: NASA.Google Scholar
Bird, J. (1998). The Upper Atmosphere: Threshold of Space. Washington, DC: NASA.Google Scholar
Birks, A. R., Delwart, S., Mutlow, C. T., et al. (1999). The ENVISAT-1 Advanced Along Track Scanning Radiometer processor and data products. Proc. IEEE Trans. Geosci. Remote Sens. Symposium, 1999 (IGARSS 1999), 3, 1703–1705.CrossRefGoogle Scholar
Boening, C., Willis, J., Landerer, F., et al. (2012). The 2011 La Niña: So strong, the oceans fell. Geophys. Res. Lett., 39(19), L19602.CrossRefGoogle Scholar
Boerner, W.-M., Mott, H., Lüneburg, E., et al. (1998). Polarimetry in radar remote sensing: Basic and applied concepts. In Manual of Remote Sensing, 3rd edn., ed.-in-chief, Ryerson, R. A., Vol. 2, Principles and Applications of Imaging Radar, ed. Henderson, F. M., & Lewis, A. J., pp. 271–357. New York: Wiley & Sons.Google Scholar
Bohren, C. F. (undated). Atmospheric Optics, .
Born, M., & Wolf, E. (1999). Principles of Optics, 7th edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Bourassa, M. A., Gille, S. T., Jackson, D. L., et al. (2010a). Ocean winds and turbulent air–sea fluxes inferred from remote sensing. Oceanography, 23(4), 36–51, .CrossRefGoogle Scholar
Bourassa, M. A., Rodriguez, E., & Gaston, R. (2010b). NASA's Ocean Vector Winds Science Team Workshops. Bull. Amer. Meteor. Soc., 91, 925–928.CrossRefGoogle Scholar
Bourassa, M. A., Zamudio, L., & O’Brien, J. J. (1999). Non-inertial flow in NSCAT observations of Tehuantepec winds. J. Geophys. Res., 104, 11311–11320.CrossRefGoogle Scholar
Bourlès, B., Lumpkin, R., McPhaden, M. J., et al. (2008). The PIRATA program: History, accomplishments, and future directions. Bull. Am. Meteorol. Soc., 89, 1111–1125.CrossRefGoogle Scholar
Brautigam, D. H. (2002). CRRES in review: Space weather and its effects on technology. J. Atmos. Sol. Terr. Phys., 64, 1709–1721.CrossRefGoogle Scholar
Brekke, C., & Solberg, A. H. S. (2005). Oil spill detection by satellite remote sensing. Remote Sens. Environ., 95, 1–13.CrossRefGoogle Scholar
Brennan, M. J., Hennon, C. C., & Knabb, R. D. (2009). The operational use of QuikSCAT ocean surface vector winds at the National Hurricane Center. Weather Forecasting, 24, 621–645, .CrossRefGoogle Scholar
Brown, O. B., & Minnett, P. J. (1999). MODIS Infrared Sea Surface Temperature Algorithm, Version 2.0. MODIS Algorithm Theoretical Basis Document, ATBD-MOD-25. Washington, DC: NASA.Google Scholar
Brown, R. A. (2000). On satellite scatterometer model functions. J. Geophys. Res., 105, 29195–29205.CrossRefGoogle Scholar
Brown, S. (2010). A novel near-land radiometer wet path-delay retrieval algorithm: Application to the Jason-2/OSTM Advanced Microwave Radiometer. IEEE Trans. Geosci. Remote Sens., 48(4), 1986–1992.CrossRefGoogle Scholar
Callaghan, A. H., de Leeuw, G., Cohen, L., et al. (2008). Relationship of oceanic whitecap coverage to wind speed and wind history. Geophys. Res. Lett., 35, L23609.CrossRefGoogle Scholar
Camps, A., Font, J., Vall-llossera, M., et al. (2004). The WISE 2000 and 2001 field experiments in support of the SMOS mission: Sea surface L-band brightness temperature observations and their application to sea surface salinity retrieval. IEEE Trans. Geosci. Remote Sens., 42(4), 804–823.CrossRefGoogle Scholar
Carder, K. L. (2002). Performance of MODIS semi-analytic ocean color algorithms: Chlorophyll a, absorption coefficients, and absorbed radiation by phytoplankton. Presentation at MODIS Science Team Meeting, July 22–24, 2002. Greenbelt, MD: NASA Goddard Space Flight Center.
Carder, K. L., Chen, F. R., Lee, Z. P., et al. (1999). Semi-analytic MODIS algorithms for chlorophyll a and absorption with bio-optical domains based on nitrate-depletion temperatures. J. Geophys. Res., 104, 5403–5421.CrossRefGoogle Scholar
Casey, K. S., Brandon, T. B., Cornillon, P., et al. (2010). The past, present and future of the AVHRR Pathfinders SST program. In Oceanography from Space Revisited, ed. Barale, V., Gower, J. F. R. and Alberotanza, L., pp. 273–287. New York: Springer.CrossRefGoogle Scholar
Cavalieri, D. J. (1994). A passive microwave technique for mapping new and young sea ice in seasonal sea ice zones. J. Geophys. Res., 99, 12561–12572.CrossRefGoogle Scholar
Cavalieri, D. J., Gloersen, P., & Campbell, W. J. (1984). Determination of sea ice parameters with the Nimbus 7 SMMR. J. Geophys. Res., 89, 5355–5369.CrossRefGoogle Scholar
Cavalieri, D. J., & Parkinson, C. L. (2012). Arctic sea ice variability and trends, 1979–2010, Cryosphere, 6, 881–889, .CrossRefGoogle Scholar
CCMP (2009). Physical Oceanography Distributed Active Archive Center (PO.DAAC) Cross-Calibrated, Multi-Platform Ocean Surface Wind Velocity Product (MEaSUREs Project) Guide Document, Version 1.0, .
CCMP (2013). Jet Propulsion Laboratory (JPL), Physical oceanography distributed active archive center (PO.DAAC), Collections: cross-calibrated multi-platform surface wind vector analysis fields, .
CEOS (2012). Committee on Earth Observation Satellites, .
CEOS (2013). CEOS: The Earth Observation Handbook, .
CFOSAT (2013). eoPortal, CFOSAT (Chinese–French Oceanography Satellite), .
CGMS (2012). Status of current and future Coordination Group for Meteorological Satellites (CGMS) Members’ satellites, .
Chahine, M. T., McCleese, D. J., Rosenkranz, P. W., et al. (1983). Interaction mechanisms within the atmosphere. In Manual of Remote Sensing, 2nd edn., ed.-in-chief, Colwell, R. N., Vol. 1, Theory, Instruments and Techniques, ed. Simonett, D. S., pp. 165–230. Falls Church, VA: American Society of Photogrammetry.Google Scholar
CHAMP (2013). GFZ German Research Centre for Geosciences, the CHAMP mission, .
Charman, W. N. (1995). Optics of the eye. In Handbook of Optics, 2nd edn., Vol. 1, ed. Bass, M., pp. 24.3–24.54. New York: McGraw-Hill.Google Scholar
Chavez, F. P., Strutton, P. G., Friederich, G. E., et al. (1999). Biological and chemical response of the equatorial pacific ocean to the 1997–98 El Niño. Science, 286(5447), 2126–2132.CrossRefGoogle ScholarPubMed
Chelton, D. B. (1998). WOCE/NASA Altimeter Algorithm Workshop. US WOCE Technical Report No. 2. College Station, TX: US Planning Office for WOCE.Google Scholar
Chelton, D. B. (ed.) (2001). Report of the High-Resolution Ocean Topography Science Working Group Meeting. Corvallis, OR: College of Oceanic and Atmospheric Sciences, Oregon State University.
Chelton, D. B., & Schlax, M. G. (1996). Global observations of oceanic Rossby waves. Science, 272, 234–238.CrossRefGoogle Scholar
Chelton, D. B., & Wentz, F. J. (2005). Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research. Bull. Am. Meteorol. Soc., 86, 1097–1115, .CrossRefGoogle Scholar
Chelton, D. B., Esbensen, S. K., Schlax, M. G., et al. (2001a). Observations of coupling between surface wind stress and sea surface temperature in the eastern tropical Pacific. J. Climate, 14, 1479–1498.2.0.CO;2>CrossRefGoogle Scholar
Chelton, D. B., Freilich, M. H., Sienkiewicz, J. M., et al. (2006). On the use of QuikSCAT scatterometer measurements of surface winds for marine weather prediction. Mon. Wea. Rev., 134, 2055–2071, .CrossRefGoogle Scholar
Chelton, D. B., Gaube, P., Schlax, M. G., et al. (2011a). The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334(6054), 328–332, .CrossRefGoogle ScholarPubMed
Chelton, D. B., Ries, J. C., Haines, B. J., et al. (2001b). Satellite altimetry. In Satellite Altimetry and Earth Sciences, ed. Fu, L.-L., & Cazenave, A., pp. 1–131. San Diego, CA: Academic Press.Google Scholar
Chelton, D. B., Schlax, M. G., & Samelson, R. M. (2011b). Global observation of nonlinear mesoscale eddies. Prog. Oceanogr., 91, 167–216.CrossRefGoogle Scholar
Chelton, D. B., Schlax, M. G., Samelson, R. M., et al. (2007). Global observations of large oceanic eddies. Geophys. Res. Lett., 34, L15606.CrossRefGoogle Scholar
Christensen, E. J., Haines, B. J., Keihm, S. J., et al. (1994). Calibration of TOPEX/POSEIDON at Platform Harvest. J. Geophys. Res., 99, 24465–24485.CrossRefGoogle Scholar
Christian, E. (2005). Planning for the Global Earth Observation System of Systems (GEOSS). Space Policy, 21(2), 105–109.CrossRefGoogle Scholar
Clark, C. and the in situ observing system authors, & Wilson, S. and the satellite observing system authors (2009). An overview of global observing systems relevant to GODAE. Oceanography, 22(3), 22–33.CrossRefGoogle Scholar
Clemente-Colón, P., & Yan, X.-H. (2000). Low-backscatter ocean features in synthetic aperture radar imagery. Johns Hopkins APL Technical Digest, 21(1), 116–121.Google Scholar
Clough, S. A., Shephard, M. W., Mlawer, E. J., et al. (2005). Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transfer, 91, 233–244.CrossRefGoogle Scholar
Colton, M. C., & Poe, G. A. (1999). Intersensor calibration of DMSP SSM/I's: F-8 to F-14, 1987–1997. IEEE Trans. Geosci. Remote Sens., 37, 418–439.CrossRefGoogle Scholar
Comiso, J. C. (2010). Polar Oceans from Space. New York: Springer.CrossRefGoogle Scholar
Comiso, J. C., Cavalieri, D. J., Parkinson, C. P., et al. (1997). Passive microwave algorithms for sea ice concentration – a comparison of two techniques. Remote Sens. Environ., 60, 357–384.CrossRefGoogle Scholar
Comiso, J. C., Parkinson, C. L., Gersten, R., et al. (2008). Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, .CrossRefGoogle Scholar
COSMO-SkyMed (2013a). COSMO-SkyMed system description, .
COSMO-SkyMed (2013b). Earth observation portal, COSMO-SkyMed (Constellation of 4 SAR Satellites), .
Cox, C., & Munk, W. (1954). Statistics of the sea surface derived from sun glitter. J. Marine Res., 13, 198–227.Google Scholar
Cracknell, A. P. (1997). The Advanced Very High Resolution Radiometer. London: Taylor & Francis.Google Scholar
Creel, L. (2003). Ripple effects: Population and coastal regions, .
CryoSat-2 (2013a). European Space Agency (ESA) CryoSat-2, .
CryoSat-2 (2013b). EoPortal directory, CryoSat-2, .
Cushman-Roisin, B. (1994). Introduction to Geophysical Fluid Dynamics. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Dash, P., Ignatov, A., Kihai, Y., et al. (2010). The SST Quality Monitor (SQUAM). J. Atmos. Oceanic Technol., 27, 1899–1917.CrossRefGoogle Scholar
Dash, P., Ignatov, A., Martin, M., et al. (2012). Group for High Resolution SST (GHRSST) analysis fields inter-comparisons: Part 2. Near real-time web-based Level 4 SST Quality Monitor (L4-SQUAM). Deep Sea Res. II, 77–80, 31–43.Google Scholar
David, L. (2010). Space junk mess getting messier in orbit, .
Desjonquères, J. D., Carayon, G., Steunou, N., et al. (2010). Poseidon-3 radar altimeter: New modes and in-flight performances. Mar. Geod., 33(S1), 53–79.CrossRefGoogle Scholar
Desnos, Y.-L., Buck, C., Guijarro, J., et al. (2000). The ENVISAT advanced synthetic aperture radar system. Proc. IEEE Trans. Geosci. Remote Sens. Symposium, 2000 (IGARSS 2000), 3, 1171–1173.Google Scholar
Dickey, T. D., Kattawar, G. W., & Voss, K. J. (2011). Shedding new light on light in the ocean. Phys. Today, 64, 44–49, .CrossRefGoogle Scholar
Dierssen, H. M. (2010). Perspectives on empirical approaches for ocean color remote sensing of chlorophyll in a changing climate. Proc. Natl. Acad. Sci., 107, 17073–17078.CrossRefGoogle Scholar
DiGiacomo, P. M., & Holt, B. (2001). Satellite observations of small coastal eddies in the Southern California Bight. J. Geophys. Res., 106, 22521–22543.CrossRefGoogle Scholar
Dinnat, E. P., & Le Vine, D. M. (2008). Impact of sun glint on salinity remote sensing: An example with the Aquarius radiometer. IEEE Trans. Geosci. Remote Sens., 46, 3137–3150.CrossRefGoogle Scholar
Dodd, J. L., Wenny, B. N., Chiang, K., et al. (2010). Space environment's effect on MODIS calibration. Proc. SPIE, 7807, 78070G-1–78070G-9.Google Scholar
Donelan, M. A., & Pierson, W. J. (1987). Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res., 92, 4971–5029.CrossRefGoogle Scholar
Donlon, C. J. (2010). Sea surface temperature measurements from thermal infrared satellite instruments: Status and outlook. In Oceanography from Space Revisited, ed. Barale, V., Gower, J. F. R., & Alberotanza, L., pp. 211–227. New York: Springer.CrossRefGoogle Scholar
Donlon, C. J., Martin, M., Stark, J., et al. (2012). The operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ., 116, 140–158.CrossRefGoogle Scholar
Donlon, C. J., Minnett, P. J., Gentemann, C., et al. (2002). Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Climate, 15, 353–369.2.0.CO;2>CrossRefGoogle Scholar
Donlon, C., Robinson, I., Casey, K. S., et al. (2007). The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull. Am. Meteorol. Soc., 88(8), 1197–1213.CrossRefGoogle Scholar
DORIS (2013). International DORIS Service, .
Drinkwater, M. R., Francis, R., Ratier, G., et al. (2004). The European Space Agency's Earth explorer mission CryoSat: Measuring variability in the cryosphere. Ann. Glaciol., 39, 313–320, .CrossRefGoogle Scholar
Duck, K. I., & King, J. C. (1983). Orbital mechanics for remote sensing. In Manual of Remote Sensing, 2nd edn., ed.-in-chief, Colwell, R. N., Vol. 1, Theory, Instruments and Techniques, ed. Simonett, D. S., pp. 699–717. Falls Church, VA: American Society of Photogrammetry.Google Scholar
Ebuchi, N., Graber, H. C., & Caruso, M. J. (2002). Evaluation of wind vectors observed by QuikSCAT/SeaWinds using ocean buoy data. J. Atmos. Oceanic Technol., 19, 2049–2062.2.0.CO;2>CrossRefGoogle Scholar
Elachi, C. (1987). Introduction to the Physics and Techniques of Remote Sensing. New York: Wiley-Interscience.Google Scholar
Embury, O., & Merchant, C. J. (2012). A reprocessing for climate of sea surface temperature from the along-track scanning radiometers: A new retrieval scheme. Remote Sens. Environ., 116, 47–61.CrossRefGoogle Scholar
Emery, W. J., Yu, Y., Wick, G. A., et al. (1994). Correcting infrared satellite estimates of sea surface temperature for atmospheric water vapor contamination. J. Geophys. Res., 99, 5219–5236.CrossRefGoogle Scholar
Eos Science Steering Committee (1989). From Pattern to Process: The Strategy of the Earth Observing System. Eos Science Steering Committee Report, Vol. II. Washington, DC: NASA.Google Scholar
Eplee, R. E., Meister, G., Patt, F. S., et al. (2012). On-orbit calibration of SeaWiFS. Appl. Opt., 51(36), 8702–8730.CrossRefGoogle ScholarPubMed
Eplee, R. E., Robinson, W. D., Bailey, S. W., et al. (2001), Calibration of SeaWiFS. II. Vicarious techniques. Appl. Opt., 40, 6701–6718.CrossRefGoogle ScholarPubMed
Eplee, R. E., Sun, J.-Q., Meister, G., et al. (2011). Cross calibration of SeaWiFS and MODIS using on-orbit observations of the moon. Appl. Opt., 50(2), 120–133.CrossRefGoogle Scholar
Eplee, R. E., Xiong, X., Sun, J.-Q., et al. (2009). The cross calibration of SeaWiFS and MODIS using on-orbit observations of the moon. Proc. SPIE, 7452, 74520X-1–74520X-9.CrossRefGoogle Scholar
ESA (2012a). Space Debris, .
ESA (2012b). New Member States, .
ESA (2012c). Sentinel Family Definition Studies, .
ESA (2012d). ESA's Sentinel satellites, .
Esaias, W. E., Abbott, M. R., Barton, I., et al. (1998). An overview of MODIS capabilities for ocean science observations. IEEE Trans. Geosci. Remote Sens., 36, 1250–1265.CrossRefGoogle Scholar
EUMETSAT (2012). About EUMETSAT, .
Evans, R. H., & Gordon, H. R. (1994). Coastal zone color scanner “system calibration”: A retrospective examination. J. Geophys. Res., 99, 7293–7307.CrossRefGoogle Scholar
Ezraty, R., & Cavanié, A. (1999). Intercomparison of backscatter maps over Arctic sea ice from NSCAT and the ERS scatterometer. J. Geophys. Res., 104, 11471–11483.CrossRefGoogle Scholar
Fischman, M., Freedman, A., McWatters, D., et al. (2009). Low-noise detector with RFI mitigation capability for the Aquarius L-band scatterometer. In IEEE Aerospace Conference, pp. 1–9.CrossRef
Fore, A. G., Stiles, B. W., Chau, A. H., et al. (2013). Point-wise wind retrieval and ambiguity removal improvements for the QuikSCAT climatological data set. IEEE Trans. Geosci. Remote Sens., 52(1), 51–59, .
Francis, C. R. (2001). Cryosat mission and data description, ESA Document Number CS-RP-ESA-SY-0059. Noordwijk: ESTEC.
Franz, B. A., Bailey, S. W., Werdell, P. J., et al. (2007). Sensor-independent approach to vicarious calibration of satellite ocean color radiometry. Appl. Opt., 46, 5068–5082.CrossRefGoogle ScholarPubMed
Freilich, M. H. (2000). SeaWinds Algorithm Theoretical Basis Document. ATBD-SWS-01. Greenbelt, MD: NASA Goddard Space Flight Center.Google Scholar
Freilich, M. H., & Dunbar, R. S. (1999). The accuracy of the NSCAT 1 vector winds: Comparison with National Data Center buoys. J. Geophys. Res., 104, 11231–11246.CrossRefGoogle Scholar
Fricker, H. A., Scambos, T., Bindschadler, R., et al. (2007). An active subglacial water system in West Antarctica mapped from space. Science, 315, 1544–1548.CrossRefGoogle ScholarPubMed
Frouin, R., Schwindling, M., & Deschamps, P.-Y. (1996). Spectral reflectance of sea foam in the visible and near-infrared: In situ measurements and remote sensing implications. J. Geophys. Res., 101, 14361–14371.CrossRefGoogle Scholar
Fu, L.-L. (2010). Determining ocean circulation and sea level from satellite altimetry: Progress and challenges. In Oceanography from Space Revisited, ed. Barale, V., Gower, J. F. R., & Alberotanza, L., pp. 147–163. New York: Springer.CrossRefGoogle Scholar
Fu, L.-L., & Cazenave, A. (ed.) (2001). Satellite Altimetry and Earth Sciences. San Diego, CA: Academic Press.
Fu, L.-L., & Holt, B. (1982). Seasat Views Oceans and Sea Ice with Synthetic-Aperture Radar. Pasadena, CA: NASA Jet Propulsion Laboratory, California Institute of Technology.Google Scholar
Fu, L.-L., Christensen, E. J., Yamarone, C. A., et al. (1994). TOPEX/POSEIDON mission overview. J. Geophys. Res., 99, 24369–24381.CrossRefGoogle Scholar
Gaiser, P. W. (1999). Windsat-satellite-based polarimetric microwave radiometer. IEEE MTT-S Digest, 1, 403–406.Google Scholar
Gaiser, P. W., St. Germain, K., Twarog, E. M., et al. (2004). The WindSat polarimetric microwave radiometer: Sensor description and early orbit performance. IEEE Trans. Geosci. Remote Sens., 42(11), 2347–2361, .CrossRefGoogle Scholar
Gao, B.-C., Goetz, A. F. H., & Wiscombe, W. J. (1993). Cirrus cloud detection from airborne imaging spectrometer data using the 1.38 micron water vapor band. Geophys. Res. Lett., 20, 301–304.CrossRefGoogle Scholar
Garver, S. A., & Siegel, D. A. (1997). Inherent optical property inversion of ocean color spectra and its biogeochemical interpretation 1. Time series from the Sargasso Sea. J. Geophys. Res., 102, 18607–18625.CrossRefGoogle Scholar
Gasparovic, R. F., Apel, J. R., & Kasischke, E. S. (1988). An overview of the SAR internal wave signature experiment. J. Geophys. Res., 93, 12304–12316.CrossRefGoogle Scholar
GCOS (2011). Global Climate Observing System, systematic observation requirements for satellite-based data products for climate, GCOS-154, .
Gelsthorpe, R. V., Schied, E., & Wilson, J. J. W. (2000). ASCAT-METOP's advanced scatterometer, ESA Bulletin No. 102, .
Gens, J. (2013). Introduction to SAR interferometry, .
Gentemann, C. L., & Minnett, P. J. (2008). Radiometric measurements of ocean surface thermal variability. J. Geophys. Res., 113, C08017, .CrossRefGoogle Scholar
Gentemann, C., Brewer, M., Hilburn, K., et al. (2010a). Algorithm development, GCOM-W, AMSR-2 ocean product suite, .
Gentemann, C. L., Meissner, T., & Wentz, F. J. (2010b). Accuracy of satellite sea surface temperatures at 7 and 11 GHz. IEEE Trans. Geosci. Remote Sens., 48(3), 1009–1018.CrossRefGoogle Scholar
Gentemann, C. L., Minnett, P. J., Sienkiewicz, J., et al. (2009). MISST: The multi-sensor improved sea surface temperature project. Oceanography, 22(2), 76–87.CrossRef
Gentemann, C. L., Wentz, F. J., Brewer, M., et al. (2010c). Passive microwave remote sensing of the ocean: An overview. In Oceanography from Space Revisited, ed. Barale, V., Gower, J. F. R., & Alberotanza, L., pp. 13–33. New York: Springer.CrossRefGoogle Scholar
GEO (2012). Group on Earth Observations, .
GHRSST (2011). GHRSST user guide version 9.1, .
GHRSST (2012a). Group for High Resolution Sea Surface Temperature, .
GHRSST (2012b). The recommended GHRSST data specification (GDS) 2.0, document revision 5, available from the GHRSST International Project Office, 2012, 123 pp. .
GHRSST (2013a) JPL PO.DAAC, GHRSST dataset discovery, .
GHRSST (2013b). GHRSST L2P and L2Pc observation data products, .
GHRSST (2013c). GHRSTT Long term stewardship and reanalysis facility, .
Giggenbach, D., Horwath, J., & Knapek, M. (2009). Optical data downlinks from earth observation platforms. Proc. SPIE 7199, .CrossRef
Gill, A. E. (1982). Atmosphere–Ocean Dynamics. London: Academic Press.Google Scholar
Giovanni (2013). Giovanni – Geospatial interactive visualization and analysis, .
Gloersen, P., & Barath, F. T. (1977). A scanning multichannel microwave radiometer for Nimbus-G and SeaSat-A. IEEE J. Oceanic Eng., 2, 172–178.CrossRef
Gloersen, P., & Cavalieri, D. J. (1986). Reduction of weather effects in the calculation of sea ice concentration from microwave radiances. J. Geophys. Res., 91, 3913–3919.CrossRefGoogle Scholar
Gloersen, P., Campbell, W. J., Cavalieri, D. J., et al. (1992). Arctic and Antarctic Sea Ice, 1978–1987: Satellite Passive-Microwave Observations and Analysis. Washington, DC: NASA.Google Scholar
GMES (2012). GMES Observing the Earth, .
GOCE (2013). ESA's gravity mission GOCE, Gravity field and steady-state Ocean Circulation Explorer (GOCE), .
GODAE (2012a). Global Ocean Data Assimilation Experiment, .
GODAE (2012b). GODAE OceanView, .
Goddijn-Murphy, L., Woolf, D. K., & Callaghan, A. H. (2011). Parameterizations and algorithms for oceanic whitecap coverage. J. Phys. Oceanogr., 41(4), 742–756.CrossRefGoogle Scholar
GOES (2012). GEO-news around the world, .
Gonzales, A. E., & Long, D. G. (1999). An assessment of NSCAT ambiguity removal. J. Geophys. Res., 104, 11449–11457.CrossRefGoogle Scholar
Gordon, H. R. (1976). Radiative transfer in the ocean: A method for determination of absorption and scattering properties. Appl. Opt., 15, 2611–2613.CrossRefGoogle ScholarPubMed
Gordon, H. R. (1998). In-orbit calibration strategy for ocean color sensors. Remote Sens. Environ., 63, 265–278.CrossRefGoogle Scholar
Gordon, H. R., & Castaño, D. J. (1987). Coastal Zone Color Scanner atmospheric correction algorithm: Multiple scattering effects. Appl. Opt., 26, 2111–2122.CrossRefGoogle ScholarPubMed
Gordon, H. R., & Clark, D. K. (1981). Clear water radiances for atmospheric correction of coastal zone color scanner imagery. Appl. Opt., 20, 4175–4180.CrossRefGoogle ScholarPubMed
Gordon, H. R., & McCluney, W. R. (1975). Estimation of the depth of sunlight penetration in the sea for remote sensing. Appl. Opt., 14(2), 413–416.CrossRefGoogle ScholarPubMed
Gordon, H. R., & Voss, K. J. (1999). MODIS normalized water-leaving radiance, MODIS Algorithm Theoretical Basis Document ATBD MOD-17. Greenbelt, MD: NASA Goddard Space Flight Center.
Gordon, H. R. & Wang, M. (1992). Surface-roughness considerations for atmospheric correction of clean color sensors. II. Error in the retrieved water-leaving radiance. Appl. Opt., 31, 4261–4267.CrossRefGoogle Scholar
Gordon, H. R., & Wang, M. (1994a). Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt., 33, 443–452.CrossRefGoogle ScholarPubMed
Gordon, H. R., & Wang, M. (1994b). Influence of oceanic whitecaps on atmospheric correction of SeaWiFS. Appl. Opt., 33, 7754–7763.CrossRefGoogle Scholar
Gordon, H. R., Brown, O. B., Evans, J. W., et al. (1988). A semianalytic radiance model of ocean color. J. Geophys. Res., 93(D9), 10909–10924.CrossRefGoogle Scholar
Gordon, H. R., Clark, D. K., Brown, J. W., et al. (1983). Phytoplankton pigment concentrations in the Middle Atlantic Bight: Comparison of ship determinations and CZCS estimates. Appl. Opt., 22, 20–36.CrossRefGoogle ScholarPubMed
GPM (2010). Global Precipitation Measurement (GPM) Mission Algorithm Theoretical Basis Document, Version 1.0, .
GPM (2012). Precipitation measurement missions, .
GPS (2013). US Global Positioning System, .
GRACE (2004). GRACE, Gravity recovery and climate experiment (press release), .
GRACE (2013). GRACE, Gravity recovery and climate experiment, .
Gregg, W. W. (2008). Assimilation of SeaWiFS ocean chlorophyll data into a three-dimensional global ocean model. J. Mar. Syst., 69(3–4), 205–225.CrossRefGoogle Scholar
Gregg, W. W., Ginoux, P., Schopf, P. S., et al. (2003). Phytoplankton and iron: Validation of a global three-dimensional ocean biogeochemical model. Deep Sea Res. Part II, 50(22–26), 3143–3169.CrossRefGoogle Scholar
Guenther, B., De Luccia, F., McCarthy, J., et al. (2011). Performance continuity of the A-Train MODIS observations: Welcome to the NPP VIIRS (poster), .
Haines, B. J., Desai, S. D., & Born, G. H. (2010). The Harvest experiment: Calibration of the climate data record from TOPEX/Poseidon, Jason-1 and the Ocean Surface Topography Mission. Marine Geod., 33(S1), 91–113.CrossRefGoogle Scholar
Haines, B., Bertiger, W., Desai, S., et al. (2002). Initial orbit determination results for Jason-1: Towards a 1-cm orbit. Proc. Inst. Navigation GPS 2002 Conference, pp. 2011–2021.
Hamilton, G. D. (1986). National Data Buoy Center programs. Bull. Amer. Meteor. Soc., 67, 411–415.2.0.CO;2>CrossRefGoogle Scholar
Hannevik, T. N. (2010). Polarisation and mode combinations for ship detection using RADARSAT-2. IEEE Geosci. Remote Sens. Symposium (IGARSS 2010), 3676–3679, .CrossRef
Hansen, J. E., & Travis, L. D. (1974). Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527–610.CrossRefGoogle Scholar
Heimbach, P., & Hasselmann, K. (2000). Development and application of satellite retrievals of ocean wave spectra. In Satellites, Oceanography and Society, ed. Halpern, D., pp. 5–33. Amsterdam: Elsevier.CrossRefGoogle Scholar
Hilburn, K. A., & Wentz, F. J. (2008). Intercalibrated passive microwave rain products from the unified microwave ocean retrieval algorithm (UMORA). J. Appl. Meteorol. Clim., 47, 778–794.CrossRefGoogle Scholar
Hobish, M. K., & Ward, A. B. (2012). Assessing the state of GRACE@10. Earth Observer, 24(2), 4–9, .Google Scholar
Hoepffner, N., & Sathyendranath, S. (1993). Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter. J. Geophys. Res., 98, 22789–22803.CrossRefGoogle Scholar
Holligan, P. M., Fernandez, E., Aiken, J., et al. (1993). A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic. Global Biogeochem. Cycles, 7, 879–900.CrossRefGoogle Scholar
Hollinger, J. P., Peirce, J. L., & Poe, G. A. (1990). SSM/I instrument evaluation. IEEE Trans. Geosci. Remote Sens., 28, 781–790.CrossRefGoogle Scholar
Hooker, S. B., & McClain, C. R. (2000). The calibration and validation of SeaWiFS data. Prog. Oceanogr., 45, 427–465.CrossRefGoogle Scholar
Hooker, S. B., Esaias, W. E., Feldman, G. C., et al. (1992). An Overview of SeaWiFS and Ocean Color. SeaWiFS Technical Report Series, Vol. 1, ed. Hooker, S. B., & Firestone, E. R, NASA Technical Memorandum 104566. Greenbelt, MD: NASA Goddard Space Flight Center.Google Scholar
Hsu, M.-K., & Liu, A. K. (2000). Nonlinear internal waves in the South China Sea. Can. J. Remote Sens., 26, 72–81.CrossRefGoogle Scholar
Hsu, N. C. (2010). Status of VIIRS on NPP/NPOESS, .
Hu, C. (2011). An empirical approach to derive MODIS ocean color patterns under severe sun glint. Geophys. Res. Lett., 38, L01603, .CrossRefGoogle Scholar
Huang, N. E., Tung, C.-C., & Long, S. R. (1990). Wave spectra. In Ocean Engineering Science, Vol. 9, Part B, The Sea, ed. Le Méhauté, B., & Hayes, D. M., pp. 197–237. New York: John Wiley.Google Scholar
Hunt, G. E. (1973). Radiative properties of terrestrial clouds at visible and infrared thermal window wavelengths. Q. J. R. Meteorol. Soc., 99, 364–369.Google Scholar
Hurley, J. (2010). Operational review: RADARSAT-1 and -2, .
IADC (2007). IADC space debris mitigation guidelines, .
IADC (2012). Inter-Agency Space Debris Coordination Committee, Document No. IADC-02–01, .
Ignatov, A., & Petrenko, B. (2010). Cloud mask and quality control of SST within the Advanced Clear Sky Processor for Oceans (ACSPO) (poster), .
Ignatov, A., Dash, P., Sapper, J., et al. (2009). The SST Quality Monitor (SQUAM) (poster), .
Imaoka, K., Kachi, M., Shibata, A., et al. (2007). Five years of AMSR-E monitoring and successive GCOM-W1/AMSR2 instrument. Proc. SPIE, 6744, 67440J.CrossRefGoogle Scholar
IOCCG (2013). International Ocean Colour Coordinating Group (IOCCG), .
iQUAM (2013) In situ SST quality monitor, .
Irisov, V. G., Kuzmin, A. V., Pospelov, M. N., et al. (1991). The dependence of sea brightness temperature on surface wind direction and speed. Theory and experiment. Proc. IEEE Geosci. Remote Sens. Symposium, 1991 (IGARSS 1991), pp. 1297–1300.
ISS-RapidScat (2013a). International Space Station, ISS-RapidScat, .
ISS-RapidScat (2013b). Jet Propulsion Laboratory (JPL) wind missions, ISS-RapidScat, .
Jackson, J. D. (1975). Classical Electrodynamics, 2nd edn. New York: John Wiley.Google Scholar
Janssen, M. A., Ruf, C. S., & Keihm, S. J. (1995). TOPEX/Poseidon microwave radiometer (TMR): II. Antenna pattern correction and brightness temperature algorithm. IEEE Trans. Geosci. Remote Sens., 33, 138–146.CrossRefGoogle Scholar
Jaruwatanadilok, S., Stiles, B. W., Fore, A., et al. (2012). OSCAT backscatter stability evaluation using ocean and natural land targets (presentation), .
JASON-2 (2010). Marine Geodesy, Volume 33, Supplement 1, .
JASON-2 (2011). OSTM/JASON-2 products handbook, .
JASON-2 (2013). JASON-2, Radar altimetry tutorial, .
JAXA (2012). Japan Aerospace Exploration Agency, Missions, .
Jeffrey, S. W., & Mantoura, R. F. C. (1997). Development of pigment methods for oceanography: SCOR-supported Working Groups and objectives. In Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods, ed. Jeffrey, S. W., Mantoura, R. F. C., & Wright, S. W., pp. 19–36. Paris: UNESCO Publishing.Google Scholar
Jeffrey, S. W., & Vesk, M. (1997). Introduction to marine phytoplankton and their pigment signatures. In Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods, ed. Jeffrey, S. W., Mantoura, R. F. C., & Wright, S. W., pp. 37–84. Paris: UNESCO Publishing.Google Scholar
Jeffries, B. (2012). Radarsat 2 – New ice information products, .
Jenkins, G. M., & Watts, D. G. (1968). Spectral Analysis and its Applications. San Francisco, CA: Holden-Day.Google Scholar
Jessup, A. T., & Zappa, C. J. (1997). Defining and quantifying microscale wave breaking with infrared imagery. J. Geophys. Res., 102, 23145–23153.CrossRefGoogle Scholar
Johnson, G. C., & Chambers, D. P. (2013). Ocean bottom pressure seasonal cycles and decadal trends from GRACE release-05: Ocean circulation implications. J. Geophys. Res., 118,  4228–4240.CrossRef
Johnson, J. W., Williams, L. A., Bracalente, E. M., et al. (1980). Seasat-A satellite scatterometer instrument evaluation. IEEE J. Oceanic Eng., 5(2), 138–144.CrossRef
Jones, W. L., & Schroeder, L. C. (1978). Radar backscatter from the ocean: Dependence on surface friction velocity. Boundary-Layer Meteorol., 13, 133–149.CrossRefGoogle Scholar
Jones, W. L., Schroeder, L. C., & Mitchell, J. L. (1977). Aircraft measurements of the microwave scattering signature of the ocean. IEEE J. Oceanic Eng., 2(1), 52–61.CrossRef
Jones, W. L., Wentz, F. J., & Schroeder, L. C. (1978). Algorithm for inferring wind stress from SEASAT-A. J. Spacecr. Rockets, 15(6), 368–374.CrossRefGoogle Scholar
Joughin, I., Smith, B. E., Howat, I. M., et al. (2010). Greenland flow variability from ice-sheet-wide velocity mapping. J. Glac., 56, 415–430.CrossRefGoogle Scholar
JPSS (2013a). NOAA NESDIS Joint Polar Satellite System, .
JPSS (2013b). About JPSS satellites, .
Katsaros, K. B. (1980). The aqueous thermal boundary layer. Boundary-Layer Meteorol., 18, 107–127.CrossRefGoogle Scholar
Katsaros, K. B., Forde, E. B., & Liu, W. T. (2001). QuikSCAT facilitates early identification of tropical depressions in 1999 hurricane season. Geophys. Res. Lett., 28, 1043–1046.CrossRefGoogle Scholar
Kawai, S. (1979). Generation of initial wavelets by instability of a coupled shear flow and their evolution to wind waves. J. Fluid Mech., 93, 661–703.CrossRefGoogle Scholar
Key, J., Collins, J., Fowler, C., & Stone, R. (1997). High-latitude surface temperature estimates from thermal satellite data. Remote Sens. Environ., 61, 302–309.CrossRefGoogle Scholar
Keyser, D. (2012), Satellite data ingest at NCEP, .
Khan, S. S. (2009). Simulation of brightness temperatures for the microwave radiometer on the AQUARIUS/SAC-D mission, Master of Science thesis, University of Central Florida, Orlando, FL, .
Kidder, S. Q., & Vonder Haar, T. H. (1995). Satellite Meteorology: An Introduction. San Diego, CA: Academic Press.Google Scholar
Killworth, P. D. (2001). Rossby waves. In Encyclopedia of Ocean Sciences, ed. Steele, J. H., Turekian, K. K., & Thorpe, S. A., Vol. 4, pp. 2434–2443. London: Academic Press.CrossRefGoogle Scholar
Kilpatrick, K. A., Podestá, G. P., & Evans, R. (2001). Overview of the NOAA/NASA advanced very high resolution radiometer pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res., 106(C5), 9179–9197.CrossRefGoogle Scholar
Kim, J.-K., Kim, D.-J., Kim, S.-H., et al. (2011). Iceberg detection using full-polarimetric RADARSAT-2 SAR data in west Antarctica. In Third International Asia–Pacific Conference on Synthetic Aperture Radar (APSAR), pp. 1–4.
Kinsman, B. (1984). Wind Waves: Their Generation and Propagation on the Ocean Surface. New York: Dover Publications.Google Scholar
Kirk, J. T. O. (1996). Light and Photosynthesis in Aquatic Ecosystems. Cambridge: Cambridge University Press.Google Scholar
Klein, L. A., & Swift, C. T. (1977). An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans. Antennas Propag., 25(1), 104–111.CrossRef
Knauss, J. A. (1997). Introduction to Physical Oceanography, 2nd edn. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Koepke, P. (1984). Effective reflectance of whitecaps. Appl. Opt., 23, 1816–1824.CrossRefGoogle ScholarPubMed
Kopelevich, O. V. (1983). Small-parameter model of optical properties of seawater. In Ocean Optics, Volume 1: Physical Ocean Optics, ed. Monin, A. S., Chapter 8. Moscow: Nauka (in Russian).Google Scholar
Kramer, H. J. (1994). Observation of the Earth and its Environment: Survey of Missions and Sensors. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Kummerow, C., Barnes, W., Kozu, T., et al. (1998). The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809–817.2.0.CO;2>CrossRefGoogle Scholar
Kwok, R. (2010). Satellite remote sensing of sea-ice thickness and kinematics: A review, J. Glac., 56, 1129–1140.CrossRefGoogle Scholar
Kwok, R., Cunningham, G. F., LaBelle-Hamer, N., et al. (1999). Ice thickness derived from high-resolution radar imagery. EOS, Trans. American Geophysical Union, 80(42), 495–497.CrossRefGoogle Scholar
Kwok, R., Cunningham, G. F., Wensnahan, M., et al. (2009). Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res., 112, C07005, .Google Scholar
Kwok, R., Rignot, E., & Holt, B. (1992). Identification of sea ice types in spaceborne synthetic aperture radar data. J. Geophys. Res., 97, 2391–2402.CrossRefGoogle Scholar
Lagerloef, G., Colomb, F., Le Vine, D., et al. (2008). The Aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge. Oceanogr., 21(1), 68–81, .CrossRefGoogle Scholar
Lagerloef, G., & Font, J. (2010). SMOS and Aquarius/SAC-D missions: The era of spaceborne salinity measurements is about to begin. In Oceanography from Space Revisited, ed. Barale, V., Gower, J. F. R., & Alberotanza, L., pp. 35–58. New York: Springer.CrossRefGoogle Scholar
Lagerloef, G., Schmitt, R., Schanze, J., et al. (2010). The ocean and the global water cycle. Oceanography, 23(4), 82–93, .CrossRefGoogle Scholar
Lalli, C. M., & Parsons, T. R. (1993). Biological Oceanography: An Introduction. Oxford: Pergamon Press.Google Scholar
Lamarre, E., & Melville, W. K. (1996). Void-fraction measurements near the ocean surface. In The Air–Sea Interface: Radio and Acoustic Sensing, Turbulence and Wave Dynamics, ed. Donelan, M. A., Hui, W. H., & Plant, W. J., pp. 693–698. Miami, FL: Rosenstiel School of Marine and Atmospheric Science, University of Miami.Google Scholar
Lamb, H. (1945). Hydrodynamics. New York: Dover Publications.Google Scholar
Lambin, J., Morrow, R., Fu, L.-L., et al. (2010). The OSTM/Jason-2 mission. Marine Geod., 33(S1), 4–25.CrossRefGoogle Scholar
Lautenbacher, C. C. (2006). The Global Earth Observation System of Systems: Science serving society. Space Pol., 22(1), 8–11.CrossRefGoogle Scholar
Laxon, S. W., Giles, K. A., Ridout, A. L., et al. (2013). CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophys. Res. Lett., 40, 732–737.CrossRefGoogle Scholar
Le Provost, C. (2001). Ocean tides. In Satellite Altimetry and Earth Sciences, ed. Fu, L.-L., & Cazenave, A., pp. 267–303. San Diego, CA: Academic Press.Google Scholar
Le Vine, D. M., & Abraham, S. (2002). The effect of the ionosphere on remote sensing of sea surface salinity from space: absorption and emission at L-band. IEEE Trans. Geosci. Remote Sens., 40(4), 771–782.CrossRefGoogle Scholar
Le Vine, D. M., Abraham, S., Kerr, Y. H., et al. (2005). Comparison of model prediction with measurements of galactic background noise at l-band. IEEE Trans. Geosci. Remote Sens., 43, 2018–2023, .CrossRefGoogle Scholar
Le Vine, D. M., Abraham, S., Utku, C., et al. (2013). Aquarius third Stokes parameter measurements: Initial results. IEEE Trans. Geosci. Remote Sens., 10, 520–524.CrossRefGoogle Scholar
Le Vine, D. M., Lagerloef, G. S. E., Colomb, F. R., et al. (2007). Aquarius: An instrument to monitor sea surface salinity from space. IEEE Trans. Geosci. Remote Sens., 45, 2040–2050.CrossRefGoogle Scholar
Le Vine, D. M., Lagerloef, G. S. E., Ruf, C., et al. (2012). Aquarius: The instrument and initial results. In Proceedings of IEEE MicroRad, pp. 1–3.CrossRef
Le Vine, D. M., Lagerloef, G. S. E., & Torrusio, S. E. (2010). Aquarius and remote sensing of sea surface salinity from space. Proc. IEEE, 98(5), 688–703.CrossRefGoogle Scholar
Lee, Z.-P., Darecki, M., Carder, K. L., et al. (2005). Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods, Marine Science Faculty Publications, Paper 10, .Google Scholar
Lefèvre, J.-M., & Cotton, P. D. (2001). Ocean surface waves. In Satellite Altimetry and Earth Sciences, ed. Fu, L.-L., & Cazenave, A., pp. 305–328. San Diego, CA: Academic Press.Google Scholar
Letelier, R. M., & Abbott, M. R. (1996). An analysis of chlorophyll fluorescence algorithms for the Moderate Resolution Imaging Spectroradiometer (MODIS). Remote Sens. Environ., 58, 215–223.CrossRefGoogle Scholar
Li, X., Clemente-Colón, P., & Friedman, K. S. (2000). Estimating oceanic mixed-layer depth from internal wave evolution observed from Radarsat-1 SAR. Johns Hopkins APL Technical Digest, 21(1), 130–135.Google Scholar
Lighthill, J. (1980). Waves in Fluids. Cambridge: Cambridge University Press.Google Scholar
Lillebridge, J. (2009). Ocean Surface Topography Mission (OSTM)/Jason-2: Level-2 Geophysical Data Records (GDR), .
Liou, K.-N. (1980). An Introduction to Atmospheric Radiation. San Diego, CA: Academic Press.Google Scholar
Liu, T. J. (1988). Moisture and latent heat flux variability in the tropical Pacific derived from satellite data. J. Geophys. Res., 93, 6749–6760.CrossRefGoogle Scholar
Liu, W. T. (2002). Progress in scatterometer application. J. Oceanogr., 58, 121–136.CrossRefGoogle Scholar
Liu, W. T., Tang, W., & Polito, P. S. (1998). NASA Scatterometer provides global ocean-surface wind fields with more structures than numerical weather prediction. Geophys. Res. Lett., 25(6), 761–764.CrossRefGoogle Scholar
Liu, W. T., Xie, X., & Tang, W. (2010). Scatterometer's unique capability in measuring ocean surface stress. In Oceanography from Space Revisited, ed. Barale, V., Gower, J. F. R., & Alberotanza, L., pp. 93–111. New York: Springer.CrossRefGoogle Scholar
Liu, Y., Key, J., Frey, R., Ackerman, S., et al. (2004). Nighttime polar cloud detection with MODIS. Remote Sens. Environ., 92, 181–194.CrossRefGoogle Scholar
Livingston, C. E., Sikaneta, I., Gierull, C., et al. (2005). RADARSAT-2 system and mode description. In Integration of Space-Based Assets within Full Spectrum Operations, Meeting Proceedings RTO-MP-SCI-150, Paper 15. Neuilly-sur-Seine: NATO Research and Technology Organization. .Google Scholar
Llewellyn-Jones, D., & Remedios, J. (2012). The Advanced Along Track Scanning Radiometer (AATSR) and its predecessors ATSR-1 and ATSR-2: An introduction to the special issue. Remote Sens. Environ., 116, 1–3.CrossRefGoogle Scholar
LOCUS (2013). Laboratory for Ocean Color Users (LOCUS), .
Long, D. G., & Drinkwater, M. R. (1999). Cryosphere applications of NSCAT data. IEEE Trans. Geosci. Remote Sens., 37, 1671–1684.CrossRefGoogle Scholar
Lungu, T., & Callahan, P. S. (2006). QuikSCAT Science Data Product User's Manual: Overview and Geophysical Data Products. D-18053-Rev A, Ver. 3.0. Pasadena, CA: Jet Propulsion Lab., .Google Scholar
Luscombe, A. (2009). Image quality and calibration of RADARSAT-2. IEEE Geosci. Rem. Sens. Symposium (IGARSS 2009), 2, 757–760.Google Scholar
Luscombe, A. P., Ferguson, I., Sheperd, N., et al. (1993). The RADARSAT synthetic aperture radar development. Can. J. Remote Sens., 19, 298–310.CrossRefGoogle Scholar
Luthcke, S. B. (2008). Recent land ice mass flux from spaceborne gravimetry, .
Luthcke, S. B., Zwally, H. J., Abdalati, W., et al. (2006). Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 314, 1286–1289.CrossRefGoogle ScholarPubMed
Madsen, S. N., & Zebker, H. A. (1998). Imaging radar interferometry. In Manual of Remote Sensing, 3rd edn., ed.-in-chief, Ryerson, R. A., Vol. 2, Principles and Applications of Imaging Radar, ed. Henderson, F. M., & Lewis, A. J., pp. 359–380. New York: Wiley and Sons.Google Scholar
Maeda, T., Imaoka, K., Kachi, M., et al. (2011). Status of GCOM-W1/AMSR2 development, algorithms, and products. Proc. SPIE Int. Soc. Opt. Eng., 8176, 81760N-1–81760N-7.Google Scholar
Maritorena, S., & Siegel, D. (2005). Consistent merging of satellite ocean color data sets using a bio-optical model. Remote Sens. Environ., 94, 429–440, .CrossRefGoogle Scholar
Maritorena, S., & Siegel, D. (2006). The GSM semi-analytical bio-optical model. In IOCCG (2006), Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, ed. Lee, Z.-P., Reports of the International Ocean-Colour Coordinating Group, No. 5, IOCCG, Dartmouth, Canada, pp. 81–85.Google Scholar
Maritorena, S., d’Andon, O. H. F., Mangin, A., et al. (2010). Merged satellite ocean color data products using a bio-optical model: Characteristics, benefits and issues. Remote Sens. Environ., 114(8), 1791–1804.CrossRefGoogle Scholar
Maritorena, S., Siegel, D. A., & Peterson, A. (2002). Optimization of a semi-analytical ocean color model for global scale applications. Appl. Opt., 41(15), 2705–2714.CrossRefGoogle Scholar
Markus, T., & Cavalieri, D. J. (2009). Sea ice concentration algorithm: Its basis and implementation. J. Remote Sens. Soc. Japan, 29(1), 216–225, .Google Scholar
Martin, M., Dash, P., Ignatov, A., et al. (2012). Group for High Resolution SST (GHRSST) analysis fields inter-comparisons: Part 1: A GHRSST multi-product ensemble (GMPE). Deep Sea Res. II, 77–80, 21–30.CrossRef
Martin, S. (2001). Polynyas. In Encyclopedia of Ocean Sciences, ed. Steele, J. H., Turekian, K. K., & Thorpe, S. A., Vol. 3, pp. 2241–2247. London: Academic Press.CrossRefGoogle Scholar
Massom, R. (1991). Satellite Remote Sensing of Polar Regions. Boca Raton, FL: CRC Press.Google Scholar
Massonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth's surface. Rev. Geophys., 36, 441–500.CrossRefGoogle Scholar
Maul, G. A. (1985). Introduction to Satellite Oceanography. Dordrecht: Kluwer.CrossRefGoogle Scholar
May, D. A., Parmeter, M. M., Olszewski, D. S., et al. (1998). Operational processing of satellite sea surface temperature retrievals at the Naval Oceanographic Office. Bull. Am. Meteorol. Soc., 79(3), 397–407.2.0.CO;2>CrossRefGoogle Scholar
McCain, C. R., Hooker, S., Feldman, G., et al. (2006). Satellite data for ocean biology, biogeochemistry, and climate research. Eos Trans. AGU, 87(34), 337–343, .CrossRefGoogle Scholar
McClain, C. R. (2009). A decade of satellite ocean color observations. Ann. Rev. Marine Sci., 1, 19−42.CrossRefGoogle ScholarPubMed
McClain, C. R., Esaias, W. E., Barnes, W., et al. (1992). In SeaWiFS Calibration and Validation Plan. SeaWiFS Technical Report Series, Vol. 3, ed. Hooker, S. B., & Firestone, E. R., NASA Technical Memorandum 104566. Greenbelt, MD: NASA Goddard Space Flight Center.Google Scholar
McClain, E. P., Pichel, W., & Walton, C. C. (1985). Comparative performance of AVHRR-based Multichannel Sea Surface Temperatures. J. Geophys. Res., 90, 11587–11601.CrossRefGoogle Scholar
McPhaden, M. J. (1999). Genesis and evolution of the 1997–98 El Niño. Science, 283, 950–954.CrossRefGoogle ScholarPubMed
McPhaden, M. J., Busalacchi, A. J., Cheney, R., et al. (1998). The Tropical Ocean–Global Atmosphere observing system: A decade of progress. J. Geophys. Res., 103, 14169–14240.CrossRefGoogle Scholar
McPhaden, M. J., Lee, T., & McClurg, D. (2011). El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett., 38, L15709.CrossRefGoogle Scholar
Meindl, E. A., & Hamilton, G. D. (1992). Programs of the National Data Buoy Center. Bull. Amer. Meteorol. Soc., 73, 985–993.2.0.CO;2>CrossRefGoogle Scholar
Meissner, T., & Wentz, F. J. (2002). Updated analysis of the ocean surface wind direction signal. IEEE Trans. Geosci. Remote Sens., 40, 1230–1240, .CrossRefGoogle Scholar
Meissner, T., & Wentz, F. J. (2004). The complex dielectric constant of pure and seawater from microwave satellite observations. IEEE Trans. Geosci. Remote Sens., 42, 1836–1849.CrossRefGoogle Scholar
Meissner, T., & Wentz, F. J. (2006a). Polarization rotation and the third Stokes parameter: the effects of spacecraft attitude and Faraday rotation, IEEE Trans. Geosci. Remote Sens., 44, 506–515, .CrossRefGoogle Scholar
Meissner, T., & Wentz, F. J. (2006b). Ocean retrievals for WindSat: Radiative transfer model, algorithm, validation. In Proceedings of IEEE MicroRad, pp. 4761–4764.
Meissner, T., & Wentz, F. J. (2009). Wind vector retrievals under rain with passive satellite microwave radiometers. IEEE Trans. Geosci. Remote Sens., 47, 3065–3083.CrossRefGoogle Scholar
Meissner, T., & Wentz, F. J. (2012). The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles. IEEE Trans. Geosci. Remote Sens., 50(8), 3004–3026, .CrossRefGoogle Scholar
Meissner, T., Ricciardulli, L., & Wentz, F. J. (2010). Wind measurements from active and passive microwave sensors, high winds and winds in rain (presentation), .
Meissner, T., Ricciardulli, L., & Wentz, F. J. (2011a). All-weather wind vector measurements from intercalibrated active and passive microwave satellite sensors. IEEE Geosci. Remote Sens. Symposium (IGARSS 2011), 1509–1511.
Meissner, T., Smith, D., & Wentz, F. J. (2001). A 10-year intercomparison between collocated SSM/I oceanic surface wind speed retrievals and global analyses. J. Geophys. Res., 106(C6), 11731–11742, .CrossRefGoogle Scholar
Meissner, T., Wentz, F. J., & Draper, D. (2011b). GMI calibration algorithm and analysis theoretical basis document, version F, report number 111311, Remote Sensing Systems, Santa Rosa, CA, 125 pp., .
Meissner, T., Wentz, F., Hilburn, K., et al. (2012). The Aquarius salinity retrieval algorithm. IEEE Trans. Geosci. Remote Sens. Symposium (IGARSS 2012), 386–388.CrossRef
Melville, W. K. (1996). The role of surface-wave breaking in air–sea interaction. Ann. Rev. Fluid Mech., 28, 279–321.CrossRefGoogle Scholar
Mertikas, S. P., Ioannides, R. T., Tziavos, I. N., et al. (2010). Statistical models and latest results in the determination of the absolute bias for the radar altimeters of Jason satellites using the Gavdos facility. Marine Geodesy, 33(S1), 114–149.CrossRefGoogle Scholar
Microwaves101 (2013). Microwaves101, Standard radar frequency letter-band nomenclature (IEEE standard 521–1984), .
Minnett, P. J. (1995a). Sea surface temperature measurements from the Along-Track Scanning Radiometer on ERS-1. In Oceanographic Applications of Remote Sensing, ed. Ikeda, M., & Dobson, F., pp. 131–143. Boca Raton, FL: CRC Press.Google Scholar
Minnett, P. J. (1995b). The Along-Track Scanning Radiometer: Instrument details. In Oceanographic Applications of Remote Sensing, ed. Ikeda, M., & Dobson, F., pp. 461–472. Boca Raton, FL: CRC Press.Google Scholar
Minnett, P. J. (2010). The validation of sea surface temperature retrievals from spaceborne infrared radiometers. In Oceanography from Space Revisited, ed. Barale, V., Gower, J. F. R., & Alberotanza, L., pp. 229–247. New York: Springer.CrossRefGoogle Scholar
Mitchell, B. G. (ed.) (1994). Ocean color from space: A coastal zone color scanner retrospective. J. Geophys. Res., 99, 7291–7570.CrossRef
Mitnik, L. M., & Kalmykov, A. I. (1992). Structure and dynamics of the Sea of Okhotsk marginal ice zone from “Ocean” satellite sensing data. J. Geophys. Res., 97, 7429–7445.CrossRefGoogle Scholar
Mobley, C. D. (1994). Light and Water; Radiative Transfer in Natural Waters. San Diego, CA: Academic Press.Google Scholar
Mobley, C. D. (1995). The optical properties of water. In Handbook of Optics, 2nd edn., Vol. 1, ed. Bass, M., pp. 43.3–43.56. New York: McGraw-Hill.Google Scholar
Mobley, C. D. (1999). Estimation of the remote sensing reflectance from above-surface measurements. Appl. Opt., 38, 7442–7455.CrossRefGoogle ScholarPubMed
MODIS (2006). Implementation of SST processing with the OBPG (Ocean Biology Processing Group), .
MODIS (2012). Terra mission, .
MODIS (2013a). NASA MODIS website, .
MODIS (2013b). AQUA project science, .
MODIS (2013c). MODIS web specifications, .
Monaldo, F. M. (2006). Evaluation of WindSat wind vector performance with respect to QuickSCAT estimates. IEEE Trans. Geosci. Remote Sens., 44, 638–644.CrossRefGoogle Scholar
Moon, T., Joughin, I., Smith, B., et al. (2012). 21st-Century evolution of Greenland outlet glacier velocities. Science, 336, 6081.CrossRefGoogle ScholarPubMed
Moore, T. S., Dowell, M. D., & Franz, B. A. (2012). Detection of coccolithophore blooms in ocean color satellite imagery: A generalized approach for use with multiple sensors. Remote Sens. Environ., 117, 249–263.CrossRefGoogle Scholar
Moore, K. D., Voss, K. J., & Gordon, H. R. (2000). Spectral reflectance of whitecaps: their contribution to the water-leaving radiance. J. Geophys. Res., 105, 6493–6499.CrossRefGoogle Scholar
Morel, A., & Gentili, B. (2009). A simple band ratio technique to quantify the colored dissolved and detrital organic material from ocean color remotely sensed data. Remote Sens. Environ., 113(5), 998–1011.CrossRefGoogle Scholar
Morel, A., Claustre, H., & Gentili, B. (2010). The most oligotrophic subtropical zones of the global ocean: Similarities and differences in terms of chlorophyll and yellow substance. Biogeoscience, 7, 3139–3151, .CrossRefGoogle Scholar
Morel, A., Gentili, B., Claustre, H., et al. (2007). Optical properties of the “clearest” natural waters. Limnol. Oceanogr., 52(1), 217–229.CrossRefGoogle Scholar
Morel, A., & Prieur, L. (1977). Analysis of variations in ocean color. Limnol. Oceanogr., 22, 709–722.CrossRefGoogle Scholar
Morrow, R., & Fu, L.-L. (2010). Preface, Special issue on the Ocean Surface Topography Mission (OSTM)/Jason-2. Marine Geodesy. 33(S1), 1–3.CrossRefGoogle Scholar
Mouchot, M.-C., & Garello, R. (1998). SAR for oceanography. In Manual of Remote Sensing, 3rd edn., ed.-in-chief, Ryerson, R. A., Vol. 2, Principles and Applications of Imaging Radar, ed. Henderson, F. M., & Lewis, A. J., pp. 631–675. New York: Wiley and Sons.Google Scholar
Mueller, J. L. (2000). SeaWiFS algorithm for the diffuse attenuation coefficient, K (490), using water-leaving radiances at 490 and 555 nm. In SeaWiFS Postlaunch Calibration and Validation Analyses, part 3, ed. Hooker, S. B., pp. 24–27. Greenbelt, MD: NASA Goddard Space Flight Center.Google Scholar
Mueller, J. L., & Trees, C. C. (1997). Revised SeaWiFs prelaunch algorithm for the diffuse attenuation coefficient K(490), NASA Technical Memorandum, TM-104566, 41, pp. 18–21. Greenbelt, MD: NASA Goddard Space Flight Center, .Google Scholar
Mueller, J. L., Fargion, G. S., & McClain, C. R. (2002). Data requirements for ocean color algorithms and validation. In Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, revision 4, volume 1, pp. 29–38, NASA Technical Memorandum 2002-210004. Greenbelt, MD: NASA Goddard Space Flight Center.Google Scholar
Naderi, F. M., Freilich, M. H., & Long, D. G. (1991). Spaceborne radar measurement of wind velocity over the ocean – an overview of the NSCAT Scatterometer System. Proc. IEEE, 79(6), 850–866.CrossRefGoogle Scholar
NASA (2012a). NASA Orbital Debris Program Office, .
NASA (2012b). The afternoon constellation, ,.
NASA (2013a). NASA Goddard Earth Sciences, Data and Information Services Center, .
NASA (2013b). Earth Observing System Data and Information System (EOSDIS), Ocean Biology Processing Group (OBPG), .
NASA Science Working Group (1984). Passive Microwave Remote Sensing for Sea Ice Research. Washington, DC: NASA Headquarters.Google Scholar
National Research Council (2004). Climate Data Records from Environmental Satellites: Interim Report. Washington, DC: The National Academies Press, 150 pp., .Google Scholar
NDBC (2012). National Data Buoy Center, .
NDBC (2013). National Data Buoy Center (NDBC), Monterey Bay historical marine data, .
Nerem, S., Chambers, D. P., Choe, C., et al. (2010). Estimating mean sea level change from the TOPEX and Jason altimeter mission. Marine Geodesy., 33(S1), 435–446.CrossRefGoogle Scholar
Neumann, T., Markus, T., McGill, M., et al. (2012). MABEL and the ICESat-2 mission: Photon-counting altimetry from air and space. Earth Observer, 24(5), 4–9, .Google Scholar
Newell, D. A., Rait, G., Ta, T., et al. (2010). GPM Microwave Imager design, predicted performance and status. IEEE Geosci. Remote Sens. Symposium (IGARSS 2010), 546–549.CrossRef
Nghiem, S. V., Martin, S., Perovich, D. K., et al. (1997). A laboratory study of the effect of frost flowers on C-Band radar backscatter from sea ice. J. Geophys. Res., 102, 3357–3370.CrossRefGoogle Scholar
Njoku, E. G., Christensen, E. J., & Cofield, R. E. (1980a). The Seasat Scanning Multichannel Microwave Radiometer (SMMR): Antenna pattern corrections – development and implementation. IEEE J. Oceanic Eng., 5(2), 125–137.
Njoku, E. G., Stacey, J. M., & Barath, F. T. (1980b). The SeaSat Scanning Multichannel Microwave Radiometer (SMMR): Instrument description and performance. IEEE J. Oceanic Eng., 5(2), 100–115.
NOAA (2012a). NOAA Comprehensive Large Array-Data Stewardship System (CLASS)-AVHRR, .
NOAA (2012b). NOAA KLM user's guide, with NOAA-N,-P supplement, .
NOAA (2012c). POES flyout chart, .
NRC (2011). Assessing Requirements for Sustained Ocean Color Research and Operations. Washington, DC: The National Academies Press, .Google Scholar
NSIDC (2013a). National Snow and Ice Data Center, .
NSIDC (2013b). National Snow and Ice Data Center, Arctic sea ice news, .
NSIDC (2013c). NASA Distributed Active Archive Center (DAAC) at National Snow and Ice Data Center (NSIDC), .
NTIA (2012). National Telecommunications and Information Administration, United States Department of Commerce, United States Frequency Allocation Chart, .
O’Brien, J. J. (ed.) (1999). NSCAT Validation and Science. J. Geophys. Res., 104, 11229–11568.CrossRef
O’Carroll, A. G., Watts, J. G., Horrocks, L. A., et al. (2006). Validation of the AATSR Meteo product sea surface temperature. J. Atmos. Oceanic Technol., 23, 711–726.CrossRefGoogle Scholar
O’Reilly, J. E., Maritorena, S., Siegel, D., et al. (2000). SeaWiFS postlaunch calibration and validation analyses, part 3, NASA Technical memorandum 2000-206892, Vol. 11, ed. Hooker, S. B., and Firestone, E. R., 49 pp. Greenbelt, MD: NASA Goddard Space Flight Center.
O’Reilly, J. E., Maritorena, S., Mitchell, B. G., et al. (1998). Ocean color chlorophyll algorithms for SeaWiFS. J. Geophys. Res., 103, 24937–24953.Google Scholar
Oceansat-2 (2013). Oceansat-2 brochure, .
OI-SST (2012). NOAA optimum interpolation 1/4 degree daily sea surface temperature analysis, .
Olsen, R. B., & Wahl, T. (2000). The role of wide swath SAR in high-latitude coastal management. Johns Hopkins APL Technical Digest, 21, 136–140.Google Scholar
Onstott, R. G. (1992). SAR and scatterometer signatures of sea ice. In Microwave Remote Sensing of Sea Ice, ed. Carsey, F. D., pp. 73–104. Washington, DC: American Geophysical Union.CrossRefGoogle Scholar
Orbital Debris (2013). NASA orbital debris program office, quarterly news, .
PACE-STD (2012). Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) mission science definition team report, .
PALSAR (2013). ALOS research and application project, PALSAR, .
Parkinson, C. L., & Cavalieri, D. J. (2012). Antarctic sea ice variability and trends, 1979–2010. Cryosphere, 6, 871–880, .CrossRefGoogle Scholar
Parkinson, C. L., Comiso, J. C., Zwally, H. J., et al. (1987). Arctic Sea Ice, 1973–1976: Satellite Passive-Microwave Observations. Washington, DC: NASA.Google Scholar
Parkinson, C. L., Ward, A., & King, M. D. (eds.) (2006). Earth Science Reference Handbook – A Guide to NASA's Earth Science Program and Earth Observing Satellite Missions. Washington, DC: National Aeronautics and Space Administration, .
Pathfinder (2001). Description of the AVHRR Pathfinder matchups, .
Pathfinder (2013). NOAA National Oceanographic Data Center, 4-km Pathfinder project, .
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., et al. (2012). The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res., 117, B04406.CrossRefGoogle Scholar
Pavolonis, M. J., Heidinger, A. K., & Uttal, T. (2005). Daytime global cloud typing from AVHRR and VIIRS: Algorithm description, validation, and comparisons. J. Appl. Meteorol., 44, 804–826.CrossRefGoogle Scholar
Pegion, P. J., Bourrassa, M. A., Legler, D. M., et al. (2000). Objectively derived daily “winds” from satellite scatterometer data. Mon. Wea. Rev., 128, 3150–3167.2.0.CO;2>CrossRefGoogle Scholar
Peralta-Ferriz, C., & Morison, J. (2010). Understanding the annual cycle of the Arctic Ocean bottom pressure. Geophys. Res. Lett., 37, L10603.CrossRefGoogle Scholar
Perbos, J. (2004). Jason-1: Satellite and system performance, one year after launch, .
Perkowitz, S. (2000). Universal Foam: From Cappuccino to the Cosmos. New York: Walker.Google Scholar
Perry, K. L. (ed.) (2001). QuikSCAT Science Data Product Users Manual, Version 2.2. NASA Report No. D-18053. Pasadena, CA: Jet Propulsion Laboratory, California Institute of Technology.
Petrenko, B., Ignatov, A., Dash, P., et al. (2013). The ACSPO clear-sky mask (ACSM) (presentation), .
Petrenko, B., Ignatov, A., Kihai, Y., et al. (2010). Clear-sky mask for the Advanced Clear-Sky Processor for Oceans (ACSPO). J. Atmos. Oceanic Technol., 27, 1609–1623.CrossRefGoogle Scholar
Petty, G. W. (2006). A First Course in Atmospheric Radiation, 2nd edn. Madison, WI: Sundog Publishing.Google Scholar
Petzold, T. J. (1972). Volume Scattering Functions for Selected Ocean Waters. La Jolla, CA: Scripps Institution of Oceanography.CrossRefGoogle Scholar
Phalippou, L., Rey, L., de Chateau-Thierry, P., et al. (2001). Overview of the performances and tracking design of the SIRAL altimeter for the CryoSat mission. Proc. IEEE Trans. Geosci. Remote Sens. Symposium (IGARSS 2001), 5, 2025–2027.Google Scholar
Phillips, K. J. H. (1992). Guide to the Sun. Cambridge: Cambridge University Press.Google Scholar
Phillips, O. M. (1977). The Dynamics of the Upper Ocean. Cambridge: Cambridge University Press.Google Scholar
Pichel, W. G., & Clemente-Colón, P. (2000). NOAA CoastWatch SAR applications and demonstration. Johns Hopkins APL Technical Digest, 21, 49–57.Google Scholar
Plant, W. J. (1990). Bragg scattering of electromagnetic waves from the air/sea interface. In Surface Waves and Fluxes, II, ed. Geernaert, G. L., & Plant, W. J., pp. 41–108. Dordrecht: Kluwer.CrossRefGoogle Scholar
PO.DAAC (2013). NASA JPL physical oceanography distributed active archive center (PO.DAAC), .
Pond, S., & Pickard, G. L. (1986). Introductory Dynamical Oceanography, 2nd edn. New York: Pergamon Press.Google Scholar
Pope, R. M., & Fry, E. S. (1997). Absorption spectrum (380–700 nm) of pure water. II. Integrating cavity measurements. Appl. Opt., 36(33), 8710–8723.CrossRefGoogle ScholarPubMed
Potin, P. (2011). Sentinel-1 mission overview (presentation), .
PPS (2010). Precipitation Processing System (PPS), NASA Global Precipitation Measurement (GPM) Microwave Imager (GMI) Level 1B (L1B), Algorithm Theoretical Basis Document (ATBD), 25 pp. Greenbelt, MD: NASA Goddard Space Flight Center, .
Prabhakara, C. R., Fraser, R. S., Dalu, G., et al. (1988). Thin cirrus clouds: Seasonal distribution over oceans deduced from Nimbus 4 IRIS. J. Appl. Meteorol., 27, 379–399.2.0.CO;2>CrossRefGoogle Scholar
RADARSAT-2 (2011). RADARSAT-2 product description, .
RADARSAT (2013). RADARSAT constellation, .
RADARSAT-2 (2013a). Canadian Space Agency, RADARSAT-2 imaging modes, .
RADARSAT-2 (2013b). Canadian Space Agency, RADARSAT-2 applications, .
RADARSAT-2 (2013c). Globe_SAR, RADARSAT-2, .
RADARSAT-2 (2013d). eoPortal directory, RADARSAT-2, .
RADATSAT-2 (2013e). Canadian Space Agency, RADARSAT-2 innovations, .
RADARSAT-2 (2013f). MDA, about RADARSAT-2, .
RaDyO (2009). The RaDyO project, radiance in a dynamic ocean, Hawaii cruise, August–September 2009, .
Raman, C. V. (1922). On the molecular scattering of light in water and the colour of the sea. Proc. R. Soc. Lond. A, 101, 64–80.CrossRefGoogle Scholar
Raney, R. K. (1998). Radar fundamentals: Technical perspective. In Manual of Remote Sensing, 3rd edn., ed.-in-chief, Ryerson, R. A., Vol. 2, Principles and Applications of Imaging Radar, ed. Henderson, F. M. & Lewis, A. J., pp. 9–130. New York: Wiley & Sons.Google Scholar
Raney, R. K., Luscombe, A. P., Langham, E. J., et al. (1991). RADARSAT. Proc. IEEE, 79, 839–849.CrossRefGoogle Scholar
Rees, W. G. (2001). Physical Principles of Remote Sensing, 2nd edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
REMSS (2013). Remote Sensing Systems, .
Renfrew, I. A., Petersen, G. N., Sproson, D. A. J., et al. (2009). A comparison of aircraft-based surface-layer observations over Denmark Strait and the Irminger Sea with meteorological analyses and QuikSCAT winds. Quart. J. Royal Meteorol. Soc., 135, 2046–2066.CrossRefGoogle Scholar
Reul, N., Tenerelli, J., Chapron, B., et al. (2007). Modeling sun glitter at L-band for sea surface salinity remote sensing with SMOS. IEEE Trans. Geosci. Remote Sens., 45, 2073–2087.CrossRefGoogle Scholar
Reynolds, R. W., Gentemann, C. L., & Corlett, G. K. (2010). Evaluation of AATSR and TMI satellite SST data. J. Climate, 23, 152–165.CrossRefGoogle Scholar
Reynolds, R. W., Rayner, N. A., Smith, T. M., et al. (2002). An improved in situ and satellite SST analysis for climate, J. Climate, 15, 1609–1625.2.0.CO;2>CrossRefGoogle Scholar
Reynolds, R. W., Smith, T. M., Liu, C., et al. (2007). Daily high-resolution-blended analyses for sea surface temperatures. J. Climate, 20, 5473–5496.CrossRefGoogle Scholar
Ricciardulli, L., & Wentz, F. J. (2011). The new geophysical model function for QuikSCAT: Implementation and validation (presentation), .
Ricciardulli, L., & Wentz, F. J. (2012a). Reprocessed QuikScat (V04) wind vectors with Ku-2011 geophysical model function, Remote Sensing Systems Technical Report 043011, .
Ricciardulli, L., & Wentz, F. J. (2012b). Development of consistent geophysical model functions for different scatterometer missions: Ku- and C-band (presentation), .
Ricciardulli, L., Meissner, T., & Wentz, F. J. (2012). Towards a climate data record of satellite ocean vector winds. IEEE Geosci. Remote Sens. Symposium (IGARSS 2012), 2067–2069.CrossRef
Riendeau, S., & Grenier, C. (2007). RADARSAT-2 Antenna. In IEEE Aerospace Conference, pp. 1–9.CrossRef
Rignot, E. (2008). Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data. Geophys. Res. Lett., 35, L12505.CrossRefGoogle Scholar
Rignot, E., & Mouginot, J. (2012). Ice flow in Greenland for the International Polar Year 2008–2009. Geophys. Res. Lett., 39, L11501.Google Scholar
Risien, C. M., & Chelton, D. B. (2008). A global climatology of surface wind and wind stress fields from eight years of QuikSCAT scatterometer data. J. Phys. Oceanogr., 38, 2379–2413.CrossRefGoogle Scholar
Roesler, C. S., & Perry, M. J. (1995). In situ phytoplankton absorption, fluorescence emission, and particulate backscattering spectra determined from reflectance. J. Geophys. Res., 100, 13279–13294.Google Scholar
Roesler, C. S., Perry, M. J., & Carder, K. L. (1989). Modeling in situ phytoplankton absorption from total absorption spectra in productive inland marine waters. Limnol. Oceanogr., 34, 1510–1523.CrossRefGoogle Scholar
Rosen, , Hensley, P. A., Joughin, S., , I. R., et al. (2000). Synthetic aperture radar interferometry. Proc. IEEE, 88, 333–382.CrossRef
Rosenqvist, A., Shimada, M., Ito, N., et al. (2007). ALOS PALSAR: A pathfinder mission for global-scale monitoring of the environment. IEEE Trans. Geosci. Remote Sens., 45(11), 3307–3316.CrossRefGoogle Scholar
Ross, D., & Jones, W. L. (1978). On the relationship of radar backscatter to wind speed and fetch. Boundary-Layer Meteorol., 13, 151–163.CrossRefGoogle Scholar
Rossow, W. B. (1989). Measuring cloud properties from space: A review. J. Climate, 2, 201–213.2.0.CO;2>CrossRefGoogle Scholar
Rostan, F. (2000). The calibration of the MetOp/Advanced Scatterometer (ASCAT). Proc. IEEE Trans. Geosci. Remote Sens. Symposium, 2000 (IGARSS 2000), 5, 2206–2208.Google Scholar
Rothrock, D. A., Yu, Y., & Maykut, G. A. (1999). Thinning of the Arctic sea-ice cover. Geophys. Res. Lett., 26, 3469–3472.CrossRefGoogle Scholar
RSS (2013a). Remote Sensing Systems: Description of AMSR data products, .
RSS (2013b). Remote Sensing Systems, radio frequency interference (RFI), .
RSS (2013c). Description of SSM/I & SSMIS data products, .
Ruf, C. S., & Giampaolo, J. C. (1998). Littoral deconvolution for a microwave radiometer. Proc. IEEE Geosci. Remote Sens. Symposium, 1998 (IGARSS 1998), 1, 378–380.Google Scholar
Sabbah, S., Barta, A., Gál, J., et al. (2006). Experimental and theoretical study of skylight polarization transmitted through Snell's window of a flat water surface. J. Opt. Soc. Am. A, 23, 1978–1988.CrossRefGoogle ScholarPubMed
Sabins, F. F. (1987). Remote Sensing: Principles and Interpretation, 2nd edn. New York: W. H. Freeman.Google Scholar
Salinity (2013). NASA physical oceanography, salinity, .
Saunders, R. W., & Kriebel, K. T. (1988). An improved method for detecting clear sky and cloudy radiances from AVHRR data. Int. J. Remote Sens., 9, 123–150.CrossRefGoogle Scholar
SeaBASS (2013). SeaWiFS Bio-optical Archive and Storage System (SeaBASS), .
SeaDAS (2008). SeaDAS training material (powerpoint), seadas.gsfc.nasa.gov/SeaDAS_Training/lectures/intro_seabass.ppt.
SeaDAS (2013). SeaWiFS Data Analysis System (SeaDAS), .
SeaWiFS (2012a). SeaWiFS Project, .
SeaWiFS (2012b). An overview of SeaWiFS and the SeaStar spacecraft, .
Segelstein, D. (1981). The Complex Refractive Index of Water. M.S. thesis, University of Missouri-Kansas City.Google Scholar
Sentinel-1 (2012). Mission Requirements Document GMES Sentinel-1,
Sentinel-1 (2013). ESA Global Monitoring for Environment and Security (GMES) Sentinel-1, .
Shankaranarayanan, K., & Donelan, M. A. (2001). A probabilistic approach to scatterometer function verification. J. Geophys. Res., 106, 19969–19990.CrossRefGoogle Scholar
Shimoda, H. (2010). Overview of GCOM. IEEE Trans. Geosci. Remote Sens. Symposium, 2010 (IGARSS 2010), l, 1351–1354.CrossRefGoogle Scholar
Siegel, D.A., Antoine, D., Behrenfeld, M.J., et al. (2012). Global ocean phytoplankton. Bull. Amer. Meteorol. Soc 93(7), S89–S92.
SIR-C/X-SAR (2013). SIR-C/X-SAR, Space radar images of Earth, .
SLR (2013). International laser ranging service, .
Smith, G. S. (2005). Human color vision and the unsaturated blue color of the daytime sky. Am. J. Phys., 73(7), 590–597.CrossRefGoogle Scholar
Smith, P. M. (1988). The emissivity of sea foam at 19 and 37 GHz. IEEE Trans. Geosci. Remote Sens., 26, 541–547.CrossRef
Smith, R. C., & Baker, K. S. (1981). Optical properties of the clearest natural waters. Appl. Opt., 20, 177–184.CrossRefGoogle ScholarPubMed
Smith, W. H. F. (2010). The marine geoid and satellite altimetry. In Oceanography from Space Revisited, ed. Barale, V., Gower, J. F. R., & Alberotanza, L., pp. 181–193. New York: Springer.CrossRefGoogle Scholar
Smith, W. H. F., & Sandwell, D. T. (1997). Global seafloor topography from satellite altimetry and ship depth soundings. Science, 277, 1957–1962.CrossRefGoogle Scholar
Snoeij, P., Attema, E., Davidson, M., et al. (2008). Sentinel-1, the GMES radar mission. In Proceedings of the IEEE Radar Conference, pp. 1–5.CrossRef
Soisuvarn, S., Jelenak, Z., Chang, P. S., et al. (2010). A revised geophysical model function for the advanced scatterometer (ASCAT) at NOAA/NESDIS. IEEE Geosci. Remote Sens. Symposium (IGARSS 2010), 1335–1338.CrossRef
Song, Q., Mu, B., & Dong, X. (2012). Evaluation of HY-2A scatterometer wind product-preliminary analysis, .
Space News (2011). Intelsat moving recovered Galaxy 15 to test location, 7 January 2011, .
Spencer, M. W., Wu, C., & Long, D. G. (1997). Tradeoffs in the design of a spaceborne scanning pencil beam scatterometer: Application to SeaWinds. IEEE Trans. Geosci. Remote Sens., 35, 115–126.CrossRefGoogle Scholar
Spencer, M. W., Wu, C., & Long, D. G. (2000). Improved resolution backscatter measurements with the SeaWinds pencil-beam scatterometer. IEEE Trans. Geosci. Remote Sens., 38, 89–104.CrossRefGoogle Scholar
Spencer, M., Chan, S., Belz, E., et al. (2011). Radio frequency interference mitigation for the planned SMAP radar and radiometer. IEEE Geosci. Remote Sens. Symposium (IGARSS 2011), 2440–2443.CrossRef
SQUAM (2013). NOAA NESDIS SST quality monitor: Hi-Res, SQUAM v10, .
SST-VC (2013). Sea Surface Temperature Virtual Constellation, .
St. Germain, K. M., & Gaiser, P. W. (2000). Spaceborne polarimetric radiometry and the Coriolis WindSat system. IEEE Aerospace Conf. Proc., 5, 159–164.Google Scholar
St. Germain, K. M., Poe, G., & Gaiser, P. (1998). Modeling of the polarimetric microwave signal due to ocean surface wind vector. Proc. IEEE Geosci. Remote Sens. Symposium, 1998 (IGARSS 1998), 5, 2304–2306.Google Scholar
Stammer, D., & Wunsch, C. (1994). Preliminary assessment of the accuracy and precision of TOPEX/POSEIDON altimeter data with respect to the large-scale ocean circulation. J. Geophys. Res., 99, 24584–24604.CrossRefGoogle Scholar
Stewart, R. (ed.), (1981). Satellite Altimetric Measurements of the Ocean, Report of the TOPEX Science Working Group. Pasadena, CA: NASA Jet Propulsion Laboratory, California Institute of Technology, .
Stewart, R. H. (1985). Methods of Satellite Oceanography. Berkeley, CA: University of California Press.Google Scholar
Stommel, H. (1966). The Gulf Stream, 2nd edn. Berkeley, CA: University of California Press.Google Scholar
Stramski, D., & Kiefer, D. A. (1991). Light scattering by microorganisms in the open ocean. Prog. Oceanogr., 28, 343–383.CrossRefGoogle Scholar
Strayed, C. (2012). Wild. New York: Alfred A. Knopf, Random House.Google Scholar
Sullivan, J. M., & Twardowski, M. S. (2009). Angular shape of the oceanic particulate volume scattering function in the backward direction. Appl. Opt., 48(35), 6811–6819.CrossRefGoogle ScholarPubMed
Sun, J., Xiong, X., Barnes, W. L., et al. (2007). MODIS reflective solar bands on-orbit lunar calibration. IEEE Trans. Geosci. Remote Sens., 45, 2383–2393.CrossRefGoogle Scholar
Swift, C. T., & McIntosh, R. E. (1983). Considerations for microwave remote sensing of ocean surface salinity. IEEE Trans. Geosci. Remote Sens., 21, 480–491.CrossRef
SWPC (2012). National Weather Service Space Weather Prediction Center, .
Szeto, M., Werdell, P. J., Moore, T. S., et al. (2011). Are the world's oceans optically different?J. Geophys. Res., 116, C00H04, .CrossRefGoogle Scholar
TanDEM-X (2013a). TanDEM-X – a new high resolution interferometric SAR mission, .
TanDEM-X (2013b). Earth observation portal, TanDEM-X (TerraSAR-X add-on for Digital Elevation Measurement), .
TAO (2012). Tropical Atmosphere Ocean Project Overview, .
Tapley, B. D., Bettadpur, S., Watkins, M., et al. (2004). The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett., 31, L09607, .CrossRefGoogle Scholar
Tapley, B. D., Ries, J. C., Davis, G. W., et al. (1994). Precision orbit determination for TOPEX/POSEIDON. J. Geophys. Res., 99, 24383–24404.CrossRefGoogle Scholar
Thomas, G. E., & Stamnes, K. (1999). Radiative Transfer in the Atmosphere and Ocean. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
TIROS (2013). NASA science missions, Television Infrared Observation Satellite Program (TIROS), .
Torres, R., Snoeij, P., Geudtner, D., et al. (2012). GMES Sentinel-1 mission. Remote Sens. Environ., 120, 9–24.CrossRefGoogle Scholar
Townsend, W. F., McGoogan, J. T., & Walsh, E. J. (1981). Satellite radar altimeters – present and future oceanographic capabilities. In Oceanography from Space, ed. Gower, J. F. R., pp. 625–636. New York: Plenum Press.CrossRefGoogle Scholar
Tran, N., Vandemark, D., Labroue, S., et al. (2010). Sea state bias in altimeter sea level estimates determined by combining wave model and satellite data. J. Geophys. Res., 115, C03020, publisher's official version , open-access version .CrossRefGoogle Scholar
Trees, C. C., Clark, D. K., Bidigare, R. R., et al. (2000). Accessory pigments versus chlorophyll a concentrations within the euphotic zone: A ubiquitous relationship. Limnol. Oceanogr., 45(5), 1130–1143.CrossRefGoogle Scholar
Trenkle, T., & Driggers, P. (2011). Joint polar satellite system. Proc. SPIE Int. Soc. Opt. Eng., 8176, 817605-1–817605-11.Google Scholar
Turpie, K. R., Meister, G., Eplee, G., et al. (2011). Assessment of NPP VIIRS ocean color data products: Hope and risk. Proc. SPIE Int. Soc. Opt. Eng., 8153, 21–25.Google Scholar
Turpie, K. R., Robinson, W. D., Franz, B. A., et al. (2012). Suomi NPP VIIRS ocean color data product early mission assessment. Proc. SPIE Int. Soc. Opt. Eng., 8510, 85101H, .Google Scholar
Ulaby, F. T., Moore, R. K., & Fung, A. K. (1981). Microwave Remote Sensing: Active and Passive, Volume 1, Microwave Remote Sensing: Fundamentals and Radiometry. Boston, MA: Addison-Wesley.Google Scholar
Ulaby, F. T., Moore, R. K., & Fung, A. K. (1982). Microwave Remote Sensing: Active and Passive, Volume 2, Radar Remote Sensing and Surface Scattering and Emission Theory. Boston, MA: Addison-Wesley.Google Scholar
Ulaby, F. T., Moore, R. K., & Fung, A. K. (1986). Microwave Remote Sensing: Active and Passive, Volume 3, From Theory to Application. Boston, MA: Addison-Wesley.Google Scholar
Valenzuela, G. R. (1978). Theories for the interaction of electromagnetic and oceanic waves – a view. Boundary-Layer Meteorol., 13, 61–85.CrossRefGoogle Scholar
Vázquez-Cuervo, J., Armstrong, E. M., & Harris, A. (2004). The effect of aerosols and clouds on the retrieval of infrared sea surface temperatures. J. Climate, 17, 3921–3933.2.0.CO;2>CrossRefGoogle Scholar
View angles (2013). Satellite and solar viewing angles, .
Vignola, F., Grover, C., Lemon, N., & McMahan, A. (2012). Building a bankable solar radiation dataset. Solar Energy, 86(8), 2218–2229.CrossRefGoogle Scholar
VIIRS (2011a). Joint Polar Satellite System (JPSS) VIIRS cloud mask (VCM), Algorithm Theoretical Basis Document, .
VIIRS (2011b). Joint Polar Satellite Systems (JPSS) VIIRS ocean color/chlorophyll algorithm theoretical basis document (ATBD), Code 474–00035, .
VIIRS (2011c). Joint Polar Satellite System (JPSS) VIIRS sea surface temperature Algorithm Theoretical Basis Document (ATBD), .
VIIRS (2012a). Visible Infrared Imaging Radiometer Suite (VIIRS), .
VIIRS (2012b). Joint Polar Satellite System (JPSS) VIIRS radiometric calibration Algorithm Theoretical Basis Document (ATBD), .
VIIRS (2012c). NPOESS Instruments – VIIRS, .
VIIRS (2013a). VIIRS-NPP initial processing for evaluation, .
VIIRS (2013b). VIIRS-NPP reprocessing 2013.0, .
Wadhams, P. (2000). Ice in the Ocean. London: Taylor & Francis.Google Scholar
Wadhams, P., & Holt, B. (1991). Waves in frazil and pancake ice and their detection on Seasat SAR imagery. J. Geophys. Res., 96, 8835–8852.CrossRefGoogle Scholar
Walton, C. C., Pichel, W. G., & Sapper, J. F. (1998). The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. Geophys. Res., 103, 27999–28012.CrossRefGoogle Scholar
Wang, M. (1999). Atmospheric correction of ocean color sensors: Computing atmospheric diffuse transmittance. Appl. Opt., 38, 451–455.CrossRefGoogle ScholarPubMed
Wang, M. (2000). The SeaWiFS atmospheric correction algorithm updates. In SeaWiFS Postlaunch Technical Report Series, Vol. 9, ed. Hooker, S. B., & Firestone, E. R., pp. 57–68. Greenbelt, MD: NASA Goddard Space Flight Center.Google Scholar
Wang, M., & Bailey, S. W. (2001), Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products. Appl. Opt., 40, 4790–4798.CrossRefGoogle ScholarPubMed
Wang, M., & Shi, W. (2005). Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies. Geophys. Res. Lett., 32, L13606, .CrossRefGoogle Scholar
Wang, M., Bailey, S., & McClain, C. R. (2000). SeaWiFS provides unique global aerosol optical property data. EOS Trans. Amer. Geophys. Union, 81(18), 197–202.CrossRefGoogle Scholar
Wang, M., Son, S., & Shi, W. (2009). Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data. Remote Sens. Environ., 113, 635–644.CrossRefGoogle Scholar
Watts, A. B. (1979). On geoid heights derived from Geos-3 altimeter data along the Hawaiian–Emperor seamount chain. J. Geophys. Res., 84, 3817–3826.CrossRefGoogle Scholar
Weast, R. C. (ed.) (1976). Handbook of Chemistry and Physics, 57th edn. Boca Raton, FL: CRC Press.
Weeden, B. (2010). Dealing with Galaxy 15: Zombiesats and on-orbit servicing. Space Rev., .
Weissman, D. E., Stiles, B. W., Hristova-Veleva, S. M., et al. (2012). Challenges to satellite sensors of ocean winds: Addressing precipitation effects. J. Atmos. Oceanic Technol., 29, 356–374.CrossRefGoogle Scholar
Welsch, C., Swenson, H., Cota, S. A., et al. (2001). VIIRS (Visible Infrared Imager Radiometer Suite): A next-generation operational environmental sensor for NPOESS. IEEE Trans. Geosci. Remote Sens. Symposium, (IGARSS 2001), 3, 1020–1022.Google Scholar
Wentz, F. J. (1975). A two-scale model for foam-free sea microwave brightness temperatures. J. Geophys. Res., 80, 3441–3446.CrossRefGoogle Scholar
Wentz, F. J. (1978). The forward scattering of microwave solar radiation from a water surface. Radio Sci., 13(1), 131–138.CrossRefGoogle Scholar
Wentz, F. J. (1981). The effect of sea-surface sun glitter on microwave radiometer measurements. RSS Technical Report No. 110481. Santa Rosa, CA: Remote Sensing Systems.
Wentz, F. J. (1983). A model function for ocean microwave brightness temperatures. J. Geophys. Res., 102, 1892–1908.CrossRefGoogle Scholar
Wentz, F. J. (1992). Measurement of oceanic wind vector using satellite microwave radiometers. IEEE Trans. Geosci. Remote Sens., 30, 960–972.CrossRefGoogle Scholar
Wentz, F. J. (1997). A well-calibrated ocean algorithm for Special Sensor Microwave/Imager. J. Geophys. Res., 102, 8703–8718.CrossRefGoogle Scholar
Wentz, F. J., Cardone, V. J., & Fedor, L. S. (1982). Intercomparison of wind speeds inferred by the SASS, Altimeter and SMMR. J. Geophys. Res., 87, 3378–3384.CrossRefGoogle Scholar
Wentz, F. J., Mattox, L. A., & Peteherych, S. (1986). New algorithms for microwave measurements of ocean winds: Applications to SEASAT and the Special Sensor Microwave Imager. J. Geophys. Res., 91, 2289–2307.CrossRefGoogle Scholar
Wentz, F. J., & Meissner, T. (1999). AMSR Ocean Algorithm, Version 2. RSS Technical Report 121599A. Santa Rosa, CA: Remote Sensing Systems.Google Scholar
Wentz, F. J., Peteherych, S., & Thomas, L. A. (1984). A model function for ocean radar cross sections at 14.6 GHz. J. Geophys. Res., 89, 3689–3704.CrossRefGoogle Scholar
Wentz, F. J., & Smith, D. K. (1999). A model function for the ocean-normalized radar cross section at 14 GHz derived from NSCAT observations. J. Geophys. Res., 104, 11499–11514.CrossRefGoogle Scholar
Wentz, F. J., & Spencer, R. W. (1998). SSM/I rain retrievals within a unified all-weather ocean algorithm. J. Atmos. Sci., 55, 1613–1627, .2.0.CO;2>CrossRefGoogle Scholar
Werdell, P. J., & Bailey, S. W. (2005). An improved in situ bio-optical data set for ocean color algorithm development and satellite data product validation. Remote Sens. Environ., 98, 122–140.CrossRefGoogle Scholar
Wilheit, T. T. (1978). A review of applications of microwave radiometry to oceanography. Boundary-Layer Meteorol., 13, 277–293.CrossRefGoogle Scholar
Wilson, W. S. (2001). Oceanography from space in the U.S.A. Backscatter, 12(2), 31–36.Google Scholar
Wilson, W. S., Apel, J. R., & Lindstrom, E. J. (2001). Satellite oceanography, history and introductory concepts. In Encyclopedia of Ocean Sciences, ed. Steele, J. H., Turekian, K. K., & Thorpe, S. A., Vol. 5, pp. 2517–2530. London: Academic Press.CrossRefGoogle Scholar
WindSat (2013a). U. S. Naval Research Lab WindSat, .
WindSat (2013b). WindSat payload description, .
Wolfe, R. E., Nishihama, M., Fleig, A. J., et al. (2002). Achieving sub-pixel geolocation accuracy in support of MODIS land science. Remote Sens. Environ., 83, 1–2, 31–49.CrossRefGoogle Scholar
Wu, J. (1990). Mean square slopes of the wind-disturbed water surface, their magnitude, directionality, and composition. Radio Sci., 25, 37–48.CrossRefGoogle Scholar
Wu, X., & Smith, W. L. (1997). Emissivity of rough sea surface for 8–13 µm: Modeling and validation. Appl. Opt., 36, 1–11.CrossRefGoogle Scholar
Wunsch, C. (2002). What is the thermohaline circulation?Science, 298, 1179–1180.CrossRefGoogle ScholarPubMed
Wunsch, C., Anderle, R. J., Bryden, H., et al. (1981). Satellite Altimetric Measurements of the Ocean, Report of the TOPEX Science Working Group. Pasadena, CA: NASA Jet Propulsion Laboratory, California Institute of Technology.Google Scholar
Wunsch, C., & Stammer, D. (1998). Satellite altimetry, the marine geoid, and the oceanic general circulation. Ann. Rev. Earth Planet. Sci., 26, 219–253.CrossRefGoogle Scholar
Xie, S.-P., Liu, W. T., Liu, Q., et al. (2001). Far-reaching effects of the Hawaiian Islands on the Pacific ocean-atmosphere system. Science, 292, 2057–2060.CrossRefGoogle ScholarPubMed
Xkcd (2013). Sky Color, .
Xu, F., & Ignatov, A. (2010). Evaluation of in situ SSTs for use in the calibration and validation of satellite retrievals. J. Geophys. Res., 115, C09022, .CrossRefGoogle Scholar
Xu, K., Liu, H., & Jiang, J. (2004). The radar altimeter and scatterometer of China's HY-2 satellite. IEEE Geosci. Remote Sens. Symposium (IGARSS 2004), 3, 1703–1706.Google Scholar
Yang, X., Li, X., Pichel, W. G., et al. (2011). Comparison of ocean surface winds from ENVISAT ASAR, METOP ASCAT scatterometer, buoy measurements and NOGAPS model. IEEE Trans. Geosci. Remote Sens., 49, 4743–4750.CrossRefGoogle Scholar
Yueh, S. H. (1997). Modeling of wind direction signals in polarimetric sea surface brightness temperatures. IEEE Trans. Geosci. Remote Sens., 35, 1400–1418.CrossRefGoogle Scholar
Yueh, S. H. (2008). Directional signals in Windsat observations of hurricane ocean winds. IEEE Trans. Geosci. Remote Sens., 46, 130–136.CrossRefGoogle Scholar
Yueh, S. H., & Chaubell, J. (2012). Sea surface salinity and wind retrieval using combined passive and active L-band microwave observations. IEEE Trans. Geosci. Remote Sens., 50, 1022–1032.CrossRefGoogle Scholar
Yueh, S. H., Wilson, W. J., Dinardo, S. J., et al. (2006). Polarimetric microwave wind radiometer model function and retrieval testing for WindSat. IEEE Trans. Geosci. Remote Sens., 44(3), 584–596.CrossRefGoogle Scholar
Yueh, S. H., Wilson, W. J., Li, K., et al. (1999). Polarimetric microwave brightness signatures of ocean wind directions. IEEE Trans. Geosci. Remote Sens., 37, 949–959.CrossRefGoogle Scholar
Yueh, S. H., Wilson, W. J., Li, K., et al. (2002). Polarimetric radar remote sensing of ocean surface wind. IEEE Trans. Geosci. Remote Sens., 40, 793–800.CrossRefGoogle Scholar
Zaneveld, J. R. V. (1995). A theoretical derivation of the dependence of the remotely sensed reflection of the ocean on the inherent optical properties. J. Geophys. Res., 100, 13135–13142.CrossRefGoogle Scholar
Zaneveld, J. R. V., Barnard, A., & Lee, Z.-P. (2006). Why are inherent optical properties needed in ocean-colour remote sensing? In IOCCG (2006), Remote Sensing of Inherent Optical Properties: Fundamentals, Tests of Algorithms, and Applications, ed. Lee, Z.-P., Reports of the International Ocean-Colour Coordinating Group, No. 5, pp. 3–11. Dartmouth: IOCCG.Google Scholar
Zaouche, G., Perbos, J., Lafon, T., et al. (2010). OSTM/Jason-2: Assessment of the system performances (Ocean Surface Topography Mission: OSTM). Marine Geodesy, 33(S1), 1–3, 26–52.CrossRefGoogle Scholar
Zeng, L., & Brown, R. A. (1998). Scatterometer observations at high wind speeds. J. Appl. Meteorol., 37, 1412–1420.2.0.CO;2>CrossRefGoogle Scholar
Zhang, B., Perrie, W., & He, Y. (2009). Remote sensing of ocean waves by along-track interferometric synthetic aperture radar. J. Geophys. Res., 114, C10015.CrossRefGoogle Scholar
Zhou, L. (2011). Advances in imagers from AVHRR to VIIRS, .
Zieger, A. R., Hancock, D.W., Hayne, G. S., et al. (1991). NASA radar altimeter for the TOPEX/POSEIDON Project. Proc. IEEE, 79, 810–826.CrossRef
Zwally, H. J., Comiso, J. C., Parkinson, C. L., et al. (1983). Antarctic Sea Ice, 1973–1976: Satellite Passive-Microwave Observations. Washington, DC: NASA.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Seelye Martin, University of Washington
  • Book: An Introduction to Ocean Remote Sensing
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139094368.019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Seelye Martin, University of Washington
  • Book: An Introduction to Ocean Remote Sensing
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139094368.019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Seelye Martin, University of Washington
  • Book: An Introduction to Ocean Remote Sensing
  • Online publication: 05 June 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139094368.019
Available formats
×