Albert Algebras over Commutative Rings
Buy print or eBook
[Opens in a new window] The Last Frontier of Jordan Systems
Book contents
- Frontmatter
- Contents
- Preface
- Notation and conventions
- I Prologue: the ancient protagonists
- II Foundations
- III Alternative algebras
- IV Composition algebras
- V Jordan algebras
- VI Cubic Jordan algebras
- VII The two Tits constructions
- VIII Lie algebras
- IX Group schemes
- References
- Index of notation
- Subject index
- References
References
Published online by Cambridge University Press: 07 November 2024
Book contents
- Frontmatter
- Contents
- Preface
- Notation and conventions
- I Prologue: the ancient protagonists
- II Foundations
- III Alternative algebras
- IV Composition algebras
- V Jordan algebras
- VI Cubic Jordan algebras
- VII The two Tits constructions
- VIII Lie algebras
- IX Group schemes
- References
- Index of notation
- Subject index
- References
Summary
A summary is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Chapter
- Information
- Albert Algebras over Commutative RingsThe Last Frontier of Jordan Systems, pp. 620 - 635Publisher: Cambridge University PressPrint publication year: 2024
References
Alberca Bjerregaard, P., Elduque, A., Martín González, C., and Navarro Márquez, F.J. 2002. On the Cartan-Jacobson theorem. J. Algebra, 250(2), 397–407. 546Google Scholar
Alberca Bjerregaard, P., Loos, O., and Martín González, C. 2005. Derivations and automorphisms of Jordan algebras in characteristic two. J. Algebra, 285(1), 146–181. 565Google Scholar
Albert, A.A. 1934. On a certain algebra of quantum mechanics. Ann. Math. (2), 35(1), 65–73. xii, 31, 508Google Scholar
Albert, A.A. 1942. Non-associative algebras: I. Fundamental concepts and isotopy. Ann. Math. (2), 43, 685–707. 121Google Scholar
Albert, A.A. 1946. On Jordan algebras of linear transformations. Trans. Amer. Math. Soc., 59, 524–555. 252Google Scholar
Albert, A.A. 1947. A structure theory for Jordan algebras. Ann. Math. (2), 48, 546–567. 252Google Scholar
Albert, A.A. 1947. The Wedderburn principal theorem for Jordan algebras. Ann. Math. (2), 48, 1–7. 252Google Scholar
Albert, A.A. 1958. A construction of exceptional Jordan division algebras. Ann. Math. (2), 67, 1–28. xii, 508, 519Google Scholar
Albert, A.A. 1961. Structure of algebras. AMS Colloquium Publications, vol. 24. Providence, RI: American Mathematical Society. Revised printing. 47, 519Google Scholar
Albert, A.A. 1965. On exceptional Jordan division algebras. Pacific J. Math., 15, 377–404. xii, 519Google Scholar
Albert, A.A., and Jacobson, N. 1957. On reduced exceptional simple Jordan algebras. Ann. Math. (2), 66, 400–417. 198, 442, 444, 516, 518Google Scholar
Albert, N.E. 2005. A3 & his algebra: How a boy from Chicago’s west side became a force in American mathematics. iUniverse. xiiGoogle Scholar
Alsaody, S. 2021. Albert algebras over rings and related torsors. Canad. J. Math., 73(3), 875–898. 427, 615Google Scholar
Alsaody, S., and Gille, P. 2019. Isotopes of octonion algebras, G2-torsors and triality. Adv. Math., 343, 864–909. 117, 194, 580, 615Google Scholar
Asok, A., Hoyois, M., and Wendt, M. 2019. Generically split octonion algebras and A1-homotopy theory. Algebra Number Theory, 13(3), 695–747. 168, 187Google Scholar
Auel, A., Bernardara, M., and Bolognesi, M. 2014. Fibrations in complete intersections of quadrics, Clifford algebras, derived categories, and rationality problems. J. Math. Pures Appl., 102, 249–291. 617Google Scholar
Baeza, R. 1978. Quadratic forms over semilocal rings. Berlin: Springer-Verlag. Lecture Notes in Mathematics, Vol. 655. 81Google Scholar
Balmer, P., and Calmès, B. 2012. Bases of total Witt groups and lax-similitude. J. Algebra Appl., 11(3), 1250045. 617Google Scholar
Bayer-Fluckiger, E., and Parimala, R. 1998. Classical groups and the Hasse principle. Ann. Math. (2), 147, 651–693. 602Google Scholar
Bayer-Fluckiger, E., First, U., and Parimala, R. 2022. On the Grothendieck-Serre conjecture for classical groups. J. London Math. Soc., 106, 2884–2926. 241Google Scholar
Beli, C., Gille, P., and Lee, T.-Y. 2016. Examples of algebraic groups of type G2 having the same maximal tori. Proc. Steklov Inst. Math., 292(1), 10–19. 201Google Scholar
Bix, R. 1981. Isomorphism theorems for octonion planes over local rings. Trans. Amer. Math. Soc., 266(2), 423–439. 192Google Scholar
Borel, A. 1991. Linear algebraic groups, 2nd ed. Graduate Texts in Mathematics, vol. 126. New York: Springer-Verlag. 574Google Scholar
Bott, R., and Milnor, J. 1958. On the parallelizability of the spheres. Bull. Amer. Math. Soc., 64, 87–89. 8Google Scholar
Bourbaki, N. 1972. Commutative algebra. Chapters 1–7. Elements of Mathematics. Paris: Hermann. Translated from the French. xvi, 16, 40, 53, 56, 63, 79, 189, 190, 224, 227, 229, 230, 235, 521Google Scholar
Bourbaki, N. 1974. Algebra, Part I: Chapters 1–3. Paris: Hermann. Translated from the French. xvi, xxii, 56, 57, 72, 98, 113, 140, 166, 218, 223, 230, 521, 522, 538, 591Google Scholar
Bourbaki, N. 1981. Algèbre. Chapitres 4 à 7. [Algebra. Chapters 4–7]. Masson, Paris. xvi, 36, 86, 241, 522, 570, 586Google Scholar
Bourbaki, N. 1989. Lie groups and Lie algebras: Chapters 1–3. Berlin: Springer-Verlag. 524, 531Google Scholar
Bourbaki, N. 2002. Lie groups and Lie algebras: Chapters 4–6. Berlin: Springer-Verlag. 26, 27, 520, 525, 526Google Scholar
Bourbaki, N. 2004. Theory of sets. Elements of Mathematics. Berlin: Springer-Verlag. Reprint of the 1968 English translation [Paris: Hermann; MR0237342]. 594Google Scholar
Bourbaki, N. 2005. Lie groups and Lie algebras: Chapters 7–9. Berlin: Springer-Verlag. 520, 524, 525, 528, 574Google Scholar
Bourbaki, N. 2012. Algèbre. Chapitre 8. Modules et anneaux semi-simples. Berlin: Springer. Second revised edition of the 1958 edition [MR0098114]. 79Google Scholar
Brandt, H. 1943. Zur Zahlentheorie der Quaternionen. Jber. Deutsch. Math. Verein., 53, 23–57. 22Google Scholar
Braun, H., and Koecher, M. 1966. Jordan-Algebren. Berlin: Springer-Verlag. 47, 84, 113, 177, 252, 300, 609Google Scholar
Brown, E., and Rice, A. 2022. An accessible proof of Hurwitz’s sums of squares theorem. Math. Mag., 95(5), 422–436. 8Google Scholar
Brown, R.B. 1967. On generalized Cayley-Dickson algebras. Pacific J. Math., 20, 415–422. 158Google Scholar
Bruck, R.H. 1958. A survey of binary systems. Reihe: Gruppentheorie. Berlin/Göttingen/Heidelberg: Springer-Verlag. 113Google Scholar
Brühne, P. 2000. Ordnungen und die Tits-Konstruktionen von Albert-Algebren. Ph.D. thesis, Fernuniversität in Hagen. 328Google Scholar
Calmès, B., and Fasel, J. 2015. Groupes classiques. Panoramas & Synthèses, 46, 1–133. 83, 573, 596, 615Google Scholar
Carr, M., and Garibaldi, S. 2006. Geometries, the principle of duality, and algebraic groups. Expo. Math., 24, 195–234. 444, 612Google Scholar
Cartan, É. 1935. Sur les domaines bornés homogènes de l’espace de n variables complexes. Abh. Math. Sem. Univ. Hamburg, 11(1), 116–162. xivGoogle Scholar
Cartan, É., and Schouten, J. A. 1926. On Riemannian geometries admitting an absolute parallelism. Proc. Akad. Wet. Amsterdam, 29, 933–946. 10Google Scholar
Castillo-Ramirez, A., and Elduque, A. 2016. Some special features of Cayley algebras, and G2, in low characteristics. J. Pure Appl. Algebra, 220(3), 1188–1205. 546Google Scholar
Cesnavicius, K. 2022. Problems about torsors over regular rings. Acta Mathematica Vietnamica, 47, 39–107. With an appendix by Yifei Zhao. 601Google Scholar
Chapman, A., Dolphin, A., and Laghribi, A. 2016. Total linkage of quaternion algebras and Pfister forms in characteristic two. J. Pure Appl. Algebra, 220(11), 3676–3691. 201Google Scholar
Chayet, M., and Garibaldi, S. 2021. A class of continuous non-associative algebras arising from algebraic groups including E8. Forum of Mathematics: Sigma, 9, e6. 253Google Scholar
Chernousov, V., and Panin, I. 2013. Purity for Pfister forms and F4-torsors with trivial g3 invariant. J. Reine Angew. Math., 2013(685), 99–104. 603Google Scholar
Chevalley, C. 1946 1957. Theory of Lie groups. I. Princeton, NJ: Princeton University Press. 12Google Scholar
Chevalley, C., and Schafer, R.D. 1950. The exceptional simple Lie algebras F4 and E6. Proc. Nat. Acad. Sci. USA, 36, 137–141. 565Google Scholar
Conrad, B. 2014. Reductive group schemes. Pages 93–444 of: Autour des schémas en groupes. Vol. I. Panor. Synthèses, vol. 42/43. Paris: Sociètè mathématique de France. 83, 236Google Scholar
Conrad, B. 2015. Non-split reductive groups over Z. Pages 193–253 of: Edixhoven, B., Gille, P., Prasad, G., and Polo, P. (eds.), Autours des schémas en groupes. Vol. II. Panor. Synthèses, vol. 46. Paris: Sociètè mathématique de France. 567, 572, 573, 575, 596, 614, 615, 618Google Scholar
Conway, J.H., and Smith, D.A. 2003. On quaternions and octonions: their geometry, arithmetic, and symmetry. Natick, MA: A K Peters. 22, 25Google Scholar
Dahn, R. 2023. Nazis, émigrés, and abstract mathematics. Phys. Today, 76(1), 44–50. xiGoogle Scholar
Dam, E.B., Koch, M., and Lillholm, M. 1998 (July). Quaternions, interpolation and animation. Tech. rept. DIKU-TR-98/5. University of Copenhagen. 8Google Scholar
Deligne, P., and Gross, B.H. 2002. On the exceptional series, and its descendants. C. R. Math. Acad. Sci. Paris, 335(11), 877–881. 615Google Scholar
Deligne, P., and Katz, N.M. 2006. Groupes de Monodromie en Geometrie Algebrique: Seminaire de Geometrie Algebrique du Bois-Marie 1967–1969 (SGA 7 II), vol. 340. Berlin/New York: Springer. 83Google Scholar
Demazure, M., and Gabriel, P. 1970. Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs. Paris: Masson & Cie, Éditeur. Avec un appendice Corps de classes local par Michiel Hazewinkel. 63, 205, 236, 239, 523Google Scholar
Demazure, M., and Grothendieck, A. 1970. Schémas en Groupes II: Groupes de type multiplicatif, et structure des schémas en groupes généraux. Lecture Notes in Mathematics, vol. 152. Berlin/New York: Springer. 569Google Scholar
Dias, I. 1988 (October). Formas quadráticas sobre LG-anéis. Ph.D. thesis, Universidade Estadual de Campinas, Brazil. 81Google Scholar
Dickson, L.E. 1923. A new simple theory of hypercomplex integers. J. Math. Pures Appl., 2, 281–326. xvi, 23Google Scholar
Dickson, L.E. 1935. Linear algebras with associativity not assumed. Duke Math. Journ., 1, 113–125. 131Google Scholar
Dieterich, E. 2005. Classification, automorphism groups and categorical structure of the two-dimensional real division algebras. J. Algebra Appl., 4(5), 517–538. 8Google Scholar
Dieudonné, J. 1948. Sur les groupes classiques. Publications de l’Institut de Mathématique de l’Université de Strasbourg, VI. Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], no. 1040. Paris: Hermann et Cie. 204Google Scholar
Drucker, D. 1978. Exceptional Lie algebras and the structure of Hermitian symmetric spaces. Memoirs of the American Mathematical Society, no. 208. Providence, RI: American Mathematical Society. xivGoogle Scholar
Elduque, A. 2000. On triality and automorphisms and derivations of composition algebras. Linear Algebra Appl., 314(1-3), 49–74. 583Google Scholar
Elduque, A. 2018. Order 3 elements in G2 and idempotents in symmetric composition algebras. Canad. J. Math., 70(5), 1038–1075. 148Google Scholar
Elkies, N.D., and Gross, B.H. 1996. The exceptional cone and the Leech lattice. Internat. Math. Res. Notices, 1996(14), 665–698. xx, 604, 611Google Scholar
Elman, R., Karpenko, N., and Merkurjev, A. 2008. The algebraic and geometric theory of quadratic forms. AMS Colloquium Publications, vol. 56. Providence, RI: American Mathematical Society. 78, 83, 104, 200, 344, 418, 429, 430, 436, 437, 438, 508, 518, 519Google Scholar
Estes, D.R., and Guralnick, R.M. 1982. Module equivalences: local to global when primitive polynomials represent units. J. Algebra, 77, 138–157. 79, 80Google Scholar
Faulkner, J.R. 1970. Octonion planes defined by quadratic Jordan algebras. Memoirs of the American Mathematical Society, no. 104. Providence, RI: American Mathematical Society. 365, 378, 432Google Scholar
Faulkner, J.R. 1988. Finding octonion algebras in associative algebras. Proc. Amer. Math. Soc., 104(4), 1027–1030. xixGoogle Scholar
Faulkner, J.R. 2000. Jordan pairs and Hopf algebras. J. Algebra, 232(1), 152–196. 84, 105Google Scholar
Faulkner, J.R. 2001. Generalized quadrangles and cubic forms. Comm. Algebra, 29, 4641–4653. xvGoogle Scholar
Faulkner, J.R. 2014. The role of nonassociative algebra in projective geometry. Graduate Studies in Mathematics, vol. 159. Providence, RI: American Mathematical Society. 10Google Scholar
Fedorov, R., and Panin, I. 2015. A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields. Publications mathématiques de l’IHÉS, 122(1), 169–193. 601Google Scholar
Fernández López, A. 2019. Jordan structures in Lie algebras. Mathematical Surveys and Monographs, no. 240. Providence, RI: American Mathematical Society. xiiiGoogle Scholar
Ferrar, J.C. 1967. Generic splitting fields of composition algebras. Trans. Amer. Math. Soc., 128, 506–514. 204Google Scholar
Filippov, V.T. 1976. Central simple Mal’tsev algebras. Algebra Logic, 15(2), 147–151. 529Google Scholar
Freudenthal, H. 1954. Beziehungen der E7 und E8 zur Oktavenebene. I. Nederl. Akad. Wetensch. Proc. Ser. A. 57 = Indag. Math., 16, 218–230. 359Google Scholar
Freudenthal, H. 1959. Beziehungen der E7 und E8 zur Oktavenebene. VIII. Nederl. Akad. Wetensch. Proc. Ser. A. 62 = Indag. Math., 21, 447–465. 359Google Scholar
Freudenthal, H. 1985. Oktaven, Ausnahmegruppen und Oktavengeometrie. Geom. Dedicata, 19, 7–63. (Reprint of Utrecht Lecture Notes, 1951). 444, 578Google Scholar
Frobenius, G. 1878. Über lineare Substitutionen und bilineare Formen. J. reine angew. Math., 84, 1–63. 159Google Scholar
Gan, W.T., and Yu, J.-K. 2003. Schémas en groupes et immeubles des groupes exceptionnels sur un corps local. Première partie: le groupe G2. Bull. Soc. Math. France, 131(3), 307–358. 580, 615Google Scholar
Garibaldi, S. 2001. Structurable algebras and groups of type E6 and E7. J. Algebra, 236(2), 651–691. 619Google Scholar
Garibaldi, S. 2009. Cohomological invariants: exceptional groups and spin groups. Memoirs of the American Mathematical Society, no. 937. Providence, RI: American Mathematical Society. With an appendix by Detlev W. Hoffmann. 618Google Scholar
Garibaldi, S., and Hoffmann, D.W. 2006. Totaro’s question on zero-cycles on G2, F4, and E6 torsors. J. London Math. Soc., 73, 325–338. 201Google Scholar
Garibaldi, S., and Petersson, H.P. 2007. Groups of outer type E6 with trivial Tits algebras. Transf. Groups, 12(3), 443–474. 619Google Scholar
Garibaldi, S., and Petersson, H.P. 2011. Wild Pfister forms over Henselian fields, K-theory, and conic division algebras. J. Algebra, 327, 386–465. 123, 133, 137, 148, 196Google Scholar
Garibaldi, S., and Saltman, D.J. 2010. Quaternion algebras with the same subfields. Pages 225–238 of: Colliot-Thélène, J.-L., Garibaldi, S., Sujatha, R. and Suresh, V. (eds.), Quadratic forms, linear algebraic groups, and cohomology. Developments in Mathematics, vol. 18. Springer. 201Google Scholar
Garibaldi, S., Merkurjev, A., and Serre, J.-P. 2003. Cohomological invariants in Galois cohomology. University Lecture Series, vol. 28. Providence, RI: American Mathematical Society. 441, 602Google Scholar
Garibaldi, S., Petersson, H.P., and Racine, M.L. 2023. Albert algebras over ℤ and other rings. Forum of Mathematics: Sigma, 11, e18. xiii, xx, 97, 103, 148, 227, 416, 417, 418, 427, 580, 617Google Scholar
Garibaldi, S., Petersson, H.P., and Racine, M.L. 2024. Solutions to the exercises from the book Albert algebras over commutative rings. Available on the arXiv as 2406.02933. http://arxiv.org/abs/2406.02933. xviGoogle Scholar
Gille, P. 2014. Octonion algebras over rings are not determined by their norms. Canad. Math. Bull., 57(2), 303–309. 193, 194, 202Google Scholar
Gille, P. 2019. Groupes algébriques semi-simples en dimension cohomologique ≤ 2. Lecture Notes in Mathematics, no. 2238. Cham: Springer. 602Google Scholar
Gille, P., and Neher, E. 2021. Springer’s odd degree extension theorem for quadratic forms over semilocal rings. Indag. Math. (N.S.), 32(6), 1290–1310. 77Google Scholar
Gille, P., and Polo, P. (eds.). 2011. Schémas en groupes (SGA 3). Tome I. Propriétés générales des schémas en groupes. Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 7. Société Mathématique de France, Paris. Séminaire de Géométrie Algébrique du Bois Marie 1962–64. [Algebraic Geometry Seminar of Bois Marie 1962–64], A seminar directed by M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud, and J.-P. Serre, Revised and annotated edition of the 1970 French original. 567Google Scholar
Gille, P., and Polo, P. (eds.). 2011. Schémas en groupes (SGA 3). Tome III. Structure des schémas en groupes réductifs. Documents Mathématiques (Paris) [Mathematical Documents (Paris)], vol. 8. Société Mathématique de France, Paris. Séminaire de Géométrie Algébrique du Bois Marie 1962–64. [Algebraic Geometry Seminar of Bois Marie 1962–64], A seminar directed by M. Demazure and A. Grothendieck with the collaboration of M. Artin, J.-E. Bertin, P. Gabriel, M. Raynaud, and J.-P. Serre, Revised and annotated edition of the 1970 French original. xx, 567, 570, 571, 572, 575, 601Google Scholar
Gille, P., and Szamuely, T. 2006. Central simple algebras and Galois cohomology. The Cambridge Studies in Advanced Mathematics, vol. 101. Cambridge: Cambridge University Press. 195, 196, 197, 205, 508, 515, 576Google Scholar
Giraud, J. 1971. Cohomologie non abélienne. Die Grundlehren der mathematischen Wissenschaften, Band 179. Berlin/New York: Springer-Verlag. 596, 617, 618Google Scholar
Greenberg, M.J. 1969. Lectures on forms in many variables. New York/Amsterdam: W. A. Benjamin. 196, 515Google Scholar
Gross, B.H., and Garibaldi, S. 2021. Minuscule embeddings. Indag. Math., 32(5), 987–1004. 615Google Scholar
Grothendieck, A. 1960. Éléments de géométrie algébrique. I. Le langage des schémas. Inst. Hautes Études Sci. Publ. Math., 4, 228. 63, 125Google Scholar
Grothendieck, A. 1967. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV. Inst. Hautes Études Sci. Publ. Math., 32, 361. 223, 232, 234, 235, 236Google Scholar
Grothendieck, A. 1968. Le groupe de Brauer. III. Exemples et compléments. Pages 88–188 of: Dix exposés sur la cohomologie des schémas. Advanced Studies in Pure Mathematics, vol. 3. Amsterdam: North-Holland. 614Google Scholar
Grothendieck, A. 1995. Technique de descente et théorèmes d’existence en géométrie algébrique. I. Généralités. Descente par morphismes fidèlement plats. Pages Exp. No. 190, 299–327 of: Séminaire Bourbaki, Vol. 5. Paris: Sociètè mathématique de France. 237, 590, 596Google Scholar
Hahn, A.J., and O’Meara, O.T. 1989. The classical groups and K-theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 291. Berlin: Springer-Verlag. With a foreword by J. Dieudonné. 162Google Scholar
Harbater, D., Hartmann, J., and Krashen, D. 2014. Local-global principles for Galois cohomology. Commentarii Mathematici Helvetici, 89(1), 215–253. 603Google Scholar
Harder, G. 1966. Über die Galoiskohomologie halbeinfacher Matrizengruppen. II. Math. Z., 92, 396–415. 602Google Scholar
Harder, G. 1967. Halbeinfache Gruppenschemata über Dedekindringen. Invent. Math., 4, 165–191. 567, 611, 612, 618Google Scholar
Harder, G. 1975. Über die Galoiskohomologie halbeinfacher algebraischer Gruppen. III. J. reine angew. Math., 274/275, 125–138. 602Google Scholar
Hartshorne, R. 1977. Algebraic geometry. Graduate Texts in Mathematics, no. 52. New York: Springer-Verlag. 63Google Scholar
Henderson, A. 1911. The twenty-seven lines upon the cubic surface. Cambridge: Cambridge University Press. xvGoogle Scholar
Hijikata, H. 1963. A remark on the groups of type G2 and F4. J. Math. Soc. Japan, 15, 159–164. xiiiGoogle Scholar
Hirzebruch, F. 1990. Division algebras and topology. Chap. 11, pages 281–302 of: Lamotke, K. (ed.), Numbers. Graduate Texts in Mathematics, vol. 123. New York: Springer. 8Google Scholar
Hirzebruch, U. 1964. Halbräume und ihre holomorphen Automorphismen. Math. Ann., 153, 395–417. xivGoogle Scholar
Hiss, G. 1984. Die adjungierten Darstellungen der Chevalley-Gruppen. Arch. Math. (Basel), 42, 408–416. 546, 565Google Scholar
Hoffmann, D.W. 2022. Splitting of quadratic Pfister forms over purely inseparable extensions in characteristic 2. J. Algebra, 596, 311–327. 201, 204Google Scholar
Hogeweij, G.M.D. 1982. Almost-classical Lie algebras. I, II. Nederl. Akad. Wetensch. Indag. Math., 44(4), 441–460. 546, 565, 600, 601Google Scholar
Hopf, H. 1940/41. Ein topologischer Beitrag zur reellen Algebra. Comm. Math. Helv., 13, 219–239. 8Google Scholar
Hübner, M., and Petersson, H.P. 2004. Two-dimensional real division algebras revisited. Beiträge Algebra Geom., 45(1), 29–36. 8Google Scholar
Humphreys, J.E. 1980. Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, vol. 9. New York: Springer-Verlag. Third printing, revised. 520Google Scholar
Hurwitz, A. 1896. Ueber die Zahlentheorie der Quaternionen. Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl., 1896, 314–340. xvi, 20, 22Google Scholar
Ikkink, T.J., and Boeve, H.M.B. 2009 (September). Dental position tracking system for a toothbrush. US Patent No. 8690579B2. 7Google Scholar
Jacobi, C. G. J. 1828. Note sur la décomposition d’un nombre donné en quatre carrés. J. Reine Angew. Math., 3, 191. 21Google Scholar
Jacobi, C. G. J. 1881. Gesammelte Werke. I. Band. Herausgegeben von C. W. Borchardt. Berlin: G. Reimer (1881). 21Google Scholar
Jacobson, N. 1937. Abstract derivation and Lie algebras. Trans. Amer. Math. Soc., 42(2), 206–224. 531Google Scholar
Jacobson, N. 1958. Composition algebras and their automorphisms. Rend. Circ. Mat. Palermo (2), 7, 55–80. 161, 165, 192, 546Google Scholar
Jacobson, N. 1959. Some groups of transformations defined by Jordan algebras. I. J. Reine Angew. Math., 201, 178–195. 578Google Scholar
Jacobson, N. 1961. Some groups of transformations defined by Jordan algebras. III. J. Reine Angew. Math., 207, 61–85. 423Google Scholar
Jacobson, N. 1962. Lie algebras. Interscience Tracts in Pure and Applied Mathematics, no. 10. New York/London: Interscience Publishers (a division of John Wiley & Sons). 262, 520, 551Google Scholar
Jacobson, N. 1968. Structure and representations of Jordan algebras. American Mathematical Society Colloquium Publications, vol. XXXIX. Providence, RI: American Mathematical Society. xvii, 47, 84, 252, 255, 377, 432, 444, 578Google Scholar
Jacobson, N. 1969. Lectures on quadratic Jordan algebras. Tata Institute of Fundamental Research Lectures on Mathematics, no. 45. Bombay: Tata Institute of Fundamental Research. xvii, 377, 551Google Scholar
Jacobson, N. 1971. Exceptional Lie algebras. Lecture Notes in Pure and Applied Mathematics, vol. 1. New York: Marcel-Dekker. xiii, 548, 565, 578Google Scholar
Jacobson, N. 1974. Abraham Adrian Albert: 1905–1972. Bull. Amer. Math. Soc., 80(6), 1075–1100. Reprinted in Celebratio Mathematica: A.A. Albert (2012). xiiGoogle Scholar
Jacobson, N. 1981. Structure theory of Jordan algebras. University of Arkansas Lecture Notes in Mathematics, vol. 5. Fayetteville: University of Arkansas. xv, xvii, 268, 281, 296, 315, 377, 381, 548Google Scholar
Jacobson, N. 1989. Basic algebra. II, 2nd ed. New York: W. H. Freeman and Company. 61, 576Google Scholar
Jacobson, N., and Katz, J. 1973. Generically algebraic quadratic Jordan algebras. Scripta Math., 29(3-4), 215–227. 394Google Scholar
Jacobson, N., and McCrimmon, K. 1971. Quadratic Jordan algebras of quadratic forms with base points. J. Indian Math. Soc. (N.S.), 35, 1–45. 316, 399Google Scholar
Jacobson, N., and Rickart, C.E. 1950. Jordan homomorphisms of rings. Trans. Amer. Math. Soc., 69, 479–502. 201Google Scholar
Jantzen, J.C. 2003. Representations of algebraic groups, 2nd ed. Math. Surveys and Monographs, vol. 107. Amer. Math. Soc. 97, 205Google Scholar
Jordan, P. 1949. Über eine nicht-desarguesche ebene projektive Geometrie. Abh. Math. Sem. Univ. Hamburg, 16, 74–76. 444Google Scholar
Jordan, P., von Neumann, J., and Wigner, E. 1934. On an algebraic generalization of the quantum mechanical formalism. Ann. Math. (2), 35(1), 29–64. xi, xii, 302Google Scholar
Kaplansky, I. 1953. Infinite-dimensional quadratic forms admitting composition. Proc. Amer. Math. Soc., 4, 956–960. 149Google Scholar
Kervaire, M.A. 1958. Non-parallelizability of the n-sphere for n > 7. Proc. Natl. Acad. Sci. USA, 44(3), 280–283. 8+7.+Proc.+Natl.+Acad.+Sci.+USA,+44(3),+280–283.+8>Google Scholar
Kirkman, T.P. 1848. LXVI. On pluquaternions, and homoid products of sums of n squares. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 33(224), 447–459. 12Google Scholar
Kirmse, J. 1924. Über die Darstellbarkeit natürlicher ganzer Zahlen als Summen von acht Quadraten und über ein mit diesem Problem zusammenhängendes nichtkommutatives und nichtassoziatives Zahlensystem. Sächs. Akad. Wissensch. Leipzig, 76, 63–82. 27, 28, 134Google Scholar
Kleinfeld, E. 1963. A characteriziation of the Cayley numbers. Pages 126–143 of: Albert, A.A. (ed.), Studies in modern algebra. Mathematical Association of America. Englewood Cliffs, NJ: Prentice-Hall. 115Google Scholar
Knebusch, M. 1965. Der Begriff der Ordnung einer Jordanalgebra. Abh. Math. Sem. Univ. Hamburg, 28, 168–184. 36, 37, 38Google Scholar
Kneser, M. 2002. Quadratische Formen. Berlin: Springer-Verlag. Revised and edited in collaboration with Rudolf Scharlau. 18, 24Google Scholar
Knus, M.-A. 1991. Quadratic and Hermitian forms over rings, vol. 294. Berlin: Springer-Verlag. 63, 65, 77, 81, 83, 123, 125, 156, 162, 193, 202, 449, 573, 615Google Scholar
Knus, M.-A., and Ojanguren, M. 1974. Théorie de la descente et algèbres d’Azumaya. Lecture Notes in Mathematics, vol. 389. Berlin/New York: Springer-Verlag. 46, 156, 159, 160, 227, 449, 531, 596Google Scholar
Knus, M.-A., Parimala, R., and Sridharan, R. 1994. On compositions and triality. J. Reine Angew. Math., 457, 45–70. 157, 173Google Scholar
Knus, M.-A., Merkurjev, A., Rost, M., and Tignol, J.-P. 1998. The book of involutions. AMS Colloquium Publications, vol. 44. Providence, RI: American Mathematical Society. xiii, 65, 66, 148, 346, 397, 440, 441, 492, 512, 573, 596, 603Google Scholar
Koecher, M., and Remmert, R. 1990. Composition algebras. Chap. 10, pages 265–280 of: Lamotke, K. (ed.), Numbers. Graduate Texts in Mathematics, vol. 123. New York: Springer. 8Google Scholar
Korkine, A., and Zolotarev, G. 1877. Sur les formes quadratiques positives. Math. Ann., 11, 242–292. 25Google Scholar
Krashen, D., and McKinnie, K. 2011. Distinguishing division algebras by finite splitting fields. Manuscripta Math, 134, 171–182. 201Google Scholar
Krieg, A. 1985. Modular forms on half-spaces of quaternions. Lecture Notes in Mathematics, vol. 1143. Berlin: Springer-Verlag. 22Google Scholar
Krutelevich, S. 2002. On a canonical form of a 3 × 3 Hermitian matrix over the ring of integral split octonions. J. Algebra, 253, 276–295. 423, 427Google Scholar
Kuipers, J.B. 2002. Quaternions and rotation sequences: a primer with applications to orbits, aerospace, and virtual reality. Princeton: Princeton University Press. 7Google Scholar
Kuzmin, E.N. 2014. Structure and representations of finite dimensional Malcev algebras. Quasigroups and Related Systems, 22, 97–132. English translation of Akademiya Nauk SSSR, Sibirskoe Otdelenie, Trudy Instituta Matematiki (Novosibirsk), Issledovaniya po Teorii Kolets i Algebr 16 (1989), 75–101. 529Google Scholar
Landsberg, J.M., and Manivel, L. 2006. The sextonions and . Adv. Math., 201, 143–179. 158Google Scholar
Lazarsfeld, R., and Van de Ven, A. 1984. Topics in the geometry of projective space. DMV Seminar, vol. 4. Basel: Birkhäuser Verlag. Recent work of F. L. Zak, With an addendum by Zak. xivGoogle Scholar
Legrand, S. 1972. Généralisations d’un théorème sur les algèbres munies d’une forme quadratique multiplicative. C. R. Acad. Sci. Paris Sér. A-B, 274, A231–A234. 154Google Scholar
Loos, O. 1975. Jordan pairs. Lecture Notes in Mathematics, vol. 460. Berlin/New York: Springer-Verlag. xiii, xiv, 107, 302, 366Google Scholar
Loos, O. 1977. Bounded symmetric domains and Jordan pairs. Mathematical Lectures. Irvine: University of California. xivGoogle Scholar
Loos, O. 1978. Separable Jordan pairs over commutative rings. Math. Ann., 233(2), 137–144. 238Google Scholar
Loos, O. 2006. Generically algebraic Jordan algebras over commutative rings. J. Algebra, 297(2), 474–529. xviii, 59, 205, 343, 384, 393, 394Google Scholar
Loos, O. 2011. Algebras with scalar involution revisited. J. Pure Appl. Algebra, 215(12), 2805–2828. 123, 130, 131Google Scholar
Loos, O., Petersson, H.P., and Racine, M.L. 2008. Inner derivations of alternative algebras over commutative rings. Algebra Number Theory, 2(8), 927–968. 241, 248, 249, 530, 533, 534, 545Google Scholar
Maillot, P.-G. 1990. Using quaternions for coding 3D transformations. Pages 498–515 of: Glassner, A.S. (ed.), Graphics gems. San Diego, CA: Academic Press. 8Google Scholar
Manin, Yu.I. 1986. Cubic forms: algebra, geometry, arithmetic, 2nd ed. North-Holland Mathematical Library, vol. 4. Amsterdam/New York: North-Holland. 113Google Scholar
Manivel, L. 2006. Configurations of lines and models of Lie algebras. J. Algebra, 304, 457–486. xvGoogle Scholar
Martindale, III, W.S. 1967. Jordan homomorphisms of the symmetric elements of a ring with involution. J. Algebra, 5, 232–249. 552Google Scholar
McCrimmon, K. 1966. A general theory of Jordan rings. Proc. Nat. Acad. Sci. USA, 56, 1072–1079. xii, 36, 268, 377Google Scholar
McCrimmon, K. 1967. Generically algebraic algebras. Trans. Amer. Math. Soc., 127, 527–551. 84Google Scholar
McCrimmon, K. 1969. The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras. Trans. Amer. Math. Soc., 139, 495–510. xvii, xix, 318, 324, 326, 327, 328, 359, 455Google Scholar
McCrimmon, K. 1970. The Freudenthal-Springer-Tits constructions revisited. Trans. Amer. Math. Soc., 148, 293–314. 263, 264, 287Google Scholar
McCrimmon, K. 1971. Homotopes of alternative algebras. Math. Ann., 191, 253–262. 115, 116, 117, 121, 380Google Scholar
McCrimmon, K. 1971. Quadratic Jordan algebras and cubing operations. Trans. Amer. Math. Soc., 153, 265–278. 273Google Scholar
McCrimmon, K. 1978. Jordan algebras and their applications. Bull. Amer. Math. Soc., 84(4), 612–627. xiiiGoogle Scholar
McCrimmon, K. 1978. Peirce ideals in Jordan algebras. Pacific J. Math., 78(2), 397–414. 314Google Scholar
McCrimmon, K. 1985. Nonassociative algebras with scalar involution. Pacific J. Math., 116(1), 85–109. 123, 136, 144, 148Google Scholar
McCrimmon, K. 2004. A taste of Jordan algebras. Universitext. New York: Springer-Verlag. xvii, 144, 252, 254, 257, 528Google Scholar
McCrimmon, K., and Zel’manov, E. 1988. The structure of strongly prime quadratic Jordan algebras. Adv. Math., 69(2), 133–222. xii, 268, 511Google Scholar
McDonald, B.R., and Waterhouse, W.C. 1981. Projective modules over rings with many units. Proc. Amer. Math. Soc., 83(3), 455–458. 80Google Scholar
Meyberg, K. 1970. The fundamental-formula in Jordan rings. Arch. Math. (Basel), 21, 43–44. 257Google Scholar
Meyer, Jeffrey S. 2014. Division algebras with infinite genus. Bull. Lond. Math. Soc., 46(3), 463–468. 201Google Scholar
Milne, J.S. 2017. Algebraic groups. Cambridge Studies in Advanced Mathematics, vol. 170. Cambridge: Cambridge University Press. 567, 571, 575, 577, 579, 582Google Scholar
Milne, J.S. 2020 (July). Algebraic number theory. Available at www.jmilne.org/math/CourseNotes/ant.html. 195Google Scholar
Milnor, J., and Husemoller, D. 1973. Symmetric bilinear forms. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 73. New York: Springer-Verlag. 24, 25, 71Google Scholar
Moran, T., Moran, S., and Moran, S. 2021. Elementary derivations of the Euclidean Hurwitz algebras. Amer. Math. Monthly, 128, 726–736. 8Google Scholar
Moreno, G. 1998. The zero divisors of the Cayley-Dickson algebras over the real numbers. Bol. Soc. Mat. Mexicana (3), 4(1), 13–28. 203Google Scholar
Mühlherr, B., and Weiss, R.M. 2019. Freudenthal triple systems in arbitrary characteristic. J. Algebra, 520, 237–275. 341Google Scholar
Mühlherr, B., and Weiss, R.M. 2022. Tits polygons. Mem. Amer. Math. Soc., 275(1352), xi+114. With an appendix by Holger P. Petersson. xiv, 342Google Scholar
Neher, E. 1987. Jordan triple systems by the grid approach. Lecture Notes in Mathematics, vol. 1280. Berlin: Springer-Verlag. xvGoogle Scholar
Neukirch, J. 1999. Algebraic number theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 322. Berlin: Springer-Verlag. Translated from the 1992 German original and with a note by Norbert Schappacher, with a foreword by G. Harder. 19Google Scholar
O’Meara, O.T. 1963. Introduction to quadratic forms. Die Grundlehren der mathematischen Wissenschaften, Bd. 117. New York: Springer-Verlag. 78, 189, 195, 196, 197, 199, 517Google Scholar
Osborn, J.M. 1962. Quadratic division algebras. Trans. Amer. Math. Soc., 105, 202–221. 131Google Scholar
Panin, I.A. 2020. Proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing a field. Izvestiya: Mathematics, 84(4), 780–795. 601Google Scholar
Parimala, R., Sridharan, R., and Thakur, M.L. 1999. Tits’ constructions of Jordan algebras and F4 bundles on the plane. Compositio Math., 119, 13–40. 505Google Scholar
Peirce, B. 1882. Linear associative algebra. New York: Van Nostrand. Reproduced and edited version of 1870 original. 116Google Scholar
Petersson, H.P. 1970. Borel subalgebras of alternative and Jordan algebras. J. Algebra, 16, 541–560. 361Google Scholar
Petersson, H.P. 1971. Quasi composition algebras. Abh. Math. Sem. Univ. Hamburg, 35, 215–222. 8Google Scholar
Petersson, H.P. 1973. Jordan-Divisionsalgebren und Bewertungen. Math. Ann., 202, 215–243. 300, 514Google Scholar
Petersson, H.P. 1974. Composition algebras over a field with a discrete valuation. J. Algebra, 29, 414–426. 148, 196, 200Google Scholar
Petersson, H.P. 1978. The isotopy problem for Jordan matrix algebras. Trans. Amer. Math. Soc., 244, 185–197. 122, 434Google Scholar
Petersson, H.P. 1979. Classification of locally compact Jordan division rings. J. Algebra, 58(2), 350–360. 300Google Scholar
Petersson, H.P. 1981. On linear and quadratic Jordan division algebras. Math. Z., 177(4), 541–548. 300Google Scholar
Petersson, H.P. 1993. Composition algebras over algebraic curves of genus zero. Trans. Amer. Math. Soc., 337(1), 473–493. 148, 181, 183, 187Google Scholar
Petersson, H.P. 2002. The structure group of an alternative algebra. Abh. Math. Sem. Univ. Hamburg, 72, 165–186. 121, 122Google Scholar
Petersson, H.P. 2004. Structure theorems for Jordan algebras of degree three over fields of arbitrary characteristic. Comm. Algebra, 32(3), 1019–1049. xv, 440, 442Google Scholar
Petersson, H.P. 2017. The non-orthogonal Cayley-Dickson construction and the octonionic structure of the E8-lattice. J. Algebra Appl., 16(12), 1750230, 52. 25Google Scholar
Petersson, H.P. 2019. A survey on Albert algebras. Transform. Groups, 24(1), 219–278. xv, xix, 450, 487, 508Google Scholar
Petersson, H.P. 2021. Norm equivalences and ideals of composition algebras. Münster J. of Math., 14, 283–293. 159, 202Google Scholar
Petersson, H.P., and Racine, M.L. 1984. Cubic subfields of exceptional simple Jordan algebras. Proc. Amer. Math. Soc., 91(1), 31–36. 519Google Scholar
Petersson, H.P., and Racine, M.L. 1984. Springer forms and the first Tits construction of exceptional Jordan division algebras. Manuscripta Math., 45(3), 249–272. 204, 461Google Scholar
Petersson, H.P., and Racine, M.L. 1985. Radicals of Jordan algebras of degree 3. Pages 349–377 of: Márki, L., and Wiegandt, R. (eds.), Radical theory (Eger, 1982). Colloquia Mathematica Societatis János Bolyai, vol. 38. Amsterdam: North-Holland. 266, 343, 345, 346Google Scholar
Petersson, H.P., and Racine, M.L. 1986. Classification of algebras arising from the Tits process. J. Algebra, 98(1), 244–279. xiv, 346, 353, 505, 506Google Scholar
Petersson, H.P., and Racine, M.L. 1986. Jordan algebras of degree 3 and the Tits process. J. Algebra, 98(1), 211–243. xix, 381, 489, 491, 512Google Scholar
Petersson, H.P., and Racine, M.L. 1994. Albert algebras. Pages 197–207 of: Kaup, W., McCrimmon, K., and Petersson, H.P. (eds.), Jordan algebras. Berlin: de Gruyter. Proceedings of a conference at Oberwolfach, 1992. xvGoogle Scholar
Petersson, H.P., and Racine, M.L. 1995. On the invariants mod 2 of Albert algebras. J. Algebra, 174(3), 1049–1072. 345, 364, 518, 603Google Scholar
Petersson, H.P., and Racine, M.L. 1996. An elementary approach to the Serre-Rost invariant of Albert algebras. Indag. Math. (N.S.), 7(3), 343–365. 603Google Scholar
Petersson, H.P., and Racine, M.L. 1996. Reduced models of Albert algebras. Math. Z., 223(3), 367–385. 165, 441Google Scholar
Petersson, H.P., and Racine, M.L. 1997. The Serre-Rost invariant of Albert algebras in characteristic three. Indag. Math. (N.S.), 8(4), 543–548. 603Google Scholar
Petersson, H.P., and Thakur, M. 2004. The étale Tits process of Jordan algebras revisited. J. Algebra, 273(1), 88–107. 506Google Scholar
Pink, R. 1998. Compact subgroups of linear algebraic groups. J. Algebra, 206(2), 438–504. 546, 565Google Scholar
Platonov, V.P., and Rapinchuk, A. 1994. Algebraic groups and number theory. Boston: Academic Press. 602Google Scholar
Pollak, B. 1970. Orthogonal groups over global fields of characteristic 2. J. Algebra, 15, 585–595. 196Google Scholar
Polster, B. 1999. Yea why try her raw wet hat: a tour of the smallest projective space. Math. Intelligencer, 21(2), 38–43. 12Google Scholar
Prasad, G., and Rapinchuk, A.S. 2009. Weakly commensurable arithmetic groups and isospectral locally symmetric spaces. Publ. Math. IHES, 109(1), 113–184. 201Google Scholar
Premet, A., and Strade, H. 2006. Classification of finite dimensional simple Lie algebras in prime characteristics. Contemporary Mathematics, 413, 185–214. 528Google Scholar
Pumplün, D. 1999. Elemente der Kategorientheorie. Spektrum-HochschulTaschenbuch [Spectrum University Paperback]. Heidelberg: Spektrum Akademischer Verlag GmbH. 228Google Scholar
Pumplün, S. 1998. Quaternion algebras over elliptic curves. Comm. Algebra, 26(12), 4357–4373. 165, 173Google Scholar
Racine, M.L. 1972. A note on quadratic Jordan algebras of degree 3. Trans. Amer. Math. Soc., 164, 93–103. 148, 364, 385, 386, 387, 397, 400, 429, 440Google Scholar
Racine, M.L. 1973. The arithmetics of quadratic Jordan algebras. Memoirs of the American Mathematical Society, no. 136. Providence, RI: American Mathematical Society. 40Google Scholar
Racine, M.L., and Zel’manov, E.I. 2015. An octonionic construction of the Kac superalgebra K10. Proc. Amer. Math. Soc., 143(3), 1075–1083. 161Google Scholar
Rapinchuk, A.S., and Rapinchuk, I.A. 2010. On division algebras having the same maximal subfields. Manuscripta Math., 132(3–4), 273–293. 201Google Scholar
Raussen, M., and Skau, C. 2009. Interview with John G. Thompson and Jacques Tits. Notices Amer. Math. Soc., 56(4), 471–478. xiiiGoogle Scholar
Rehm, H.P. 1993. Prime factorization of integral Cayley octaves. Ann. Fac. Sci. Toulouse Math. (6), 2(2), 271–289. 25Google Scholar
Roby, N. 1963. Lois polynomes et lois formelles en théorie des modules. Ann. Sci. École Norm. Sup. (3), 80, 213–348. xvi, 84, 102, 103Google Scholar
Rost, M. 1991. A (mod 3) invariant for exceptional Jordan algebras. C. R. Acad. Sci. Paris Sér. I Math., 313, 823–827. 602Google Scholar
Rost, M. 2002. Norm varieties and algebraic cobordism. Pages 77–85 of: Li, T. (ed.), Proceedings of the International Congress of Mathematicians, vol. II. Beijing: Higher Education Press. arXiv:0304208. 458Google Scholar
Schafer, R.D. 1943. Alternative algebras over an arbitrary field. Bull. Amer. Math. Soc., 49, 549–555. 121, 178Google Scholar
Schafer, R.D. 1948. The exceptional simple Jordan algebras. Amer. J. Math., 70, 82–94. 508Google Scholar
Schafer, R.D. 1995. An introduction to nonassociative algebras. New York: Dover. Corrected reprint of the 1966 original. 113, 116, 177, 314, 535, 536, 545Google Scholar
Scharlau, W. 1985. Quadratic and Hermitian forms. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270. Berlin: Springer-Verlag. 25, 78, 195, 196, 514, 515Google Scholar
Schilling, O., and Hasse, H. 1936. Die Normen aus einer normalen Divisionsalgebra über einem algebraischen Zahlkörper. J. Reine Angew. Math., 174, 248–252. 515Google Scholar
Seligman, G.B. 1967. Modular Lie algebras. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 40. New York: Springer-Verlag. 528Google Scholar
Semenov, N. 2016. Motivic construction of cohomological invariants. Comment. Math. Helv., 91, 163–202. 458Google Scholar
Serre, J-P. 1973. A course in arithmetic. Graduate Texts in Mathematics, no. 7. New York/Heidelberg: Springer-Verlag. Translated from the French. 24Google Scholar
Serre, J-P. 1979. Local fields. Graduate Texts in Mathematics, vol. 67. New York/Berlin: Springer-Verlag. Translated from the French by Marvin Jay Greenberg. 196, 596Google Scholar
Serre, J-P. 1995. Cohomologie galoisienne: progrès et problèmes. Astérisque, 227, 229–257. Séminaire Bourbaki, vol. 1993/94, Exp. 783. 440Google Scholar
Serre, J-P. 2002. Galois cohomology, English ed. Springer Monographs in Mathematics. Berlin: Springer-Verlag. Translated from the French by Patrick Ion and revised by the author. 515, 602Google Scholar
Smith, H.J.S. 1867. On the orders and genera of quadratic forms containing more than three indeterminates. Proc. Royal Soc., 16, 197–208. 25Google Scholar
Springer, T.A. 1960. The classification of reduced exceptional simple Jordan algebras. Nederl. Akad. Wetensch. Proc. Ser. A 63 = Indag. Math., 22, 414–422. 429, 440Google Scholar
Springer, T.A. 1960. The projective octave plane. I, II. Nederl. Akad. Wetensch. Proc. Ser. A 63 = Indag. Math., 22, 74–101. 444Google Scholar
Springer, T.A. 1962. Characterization of a class of cubic forms. Nederl. Akad. Wetensch. Proc. Ser. A 65 = Indag. Math., 24, 259–265. 328, 618Google Scholar
Springer, T.A. 1963. Oktaven, Jordan-Algebren und Ausnahmegruppen. Universität Göttingen. 31, 105, 346, 461Google Scholar
Springer, T.A. 1973. Jordan algebras and algebraic groups. New York/Heidelberg: Springer-Verlag. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 75. xiii, 302, 576, 577, 578, 583, 615Google Scholar
Springer, T.A. 1998. Linear algebraic groups, 2nd ed. Boston, MA: Birkhäuser. 574, 575, 581, 597Google Scholar
Springer, T.A., and Veldkamp, F.D. 2000. Octonions, Jordan algebras and exceptional groups. Springer Monographs in Mathematics. Berlin: Springer-Verlag. xiii, 148, 161, 346, 461, 576, 577, 581, 615Google Scholar
Stacks Project Authors, The. 2018. Stacks project. https://stacks.math. columbia.edu. xvi, 16, 35, 46, 55, 56, 79, 80, 155, 227, 230, 232, 235, 236, 615, 616Google Scholar
Steinberg, R. 1961. Automorphisms of classical Lie algebras. Pacific J. Math., 11, 1119–1129. [= Collected Papers, pp. 101–111]. 546, 600Google Scholar
Strade, H. 2004. Simple Lie algebras over fields of positive characteristic. I. de Gruyter Expositions in Mathematics, vol. 38. Berlin: Walter de Gruyter & Co. 528Google Scholar
Thakur, M.L. 1995. Cayley algebra bundles on revisited. Comm. Algebra, 23(13), 5119–5130. 157, 165, 170, 171, 173, 176Google Scholar
Thakur, M.L. 2001. Kummer elements and the mod-3 invariant of Albert algebras. J. Algebra, 244(2), 429–434. 451Google Scholar
Thakur, M.L. 2021. The cyclicity problem for Albert algebras. Israel J. Math., 241(1), 139–145. 519Google Scholar
Tits, J. 1966. Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionnelles. I. Construction. Nederl. Akad. Wetensch. Proc. Ser. A 69 = Indag. Math., 28, 223–237. xiiiGoogle Scholar
Tits, J. 1971. Représentations linéaires irréductibles d’un groupe réductif sur un corps quelconque. J. Reine Angew. Math., 247, 196–220. 619Google Scholar
Tits, J. 1974. Buildings of spherical type and finite BN-pairs. Lecture Notes in Mathematics, vol. 386. Berlin/New York: Springer-Verlag. xiiiGoogle Scholar
Tits, J. 1976. Classification of buildings of spherical type and Moufang polygons: a survey. Pages 229–246 of: Colloquio Internazionale sulle Teorie Combinatorie (Roma, 1973), Tomo I. Atti dei Convegni Lincei, no. 17. Accademia Nazionale dei Lincei. xiiiGoogle Scholar
Tits, J. 1990. Strongly inner anisotropic forms of simple algebraic groups. J. Algebra, 131, 648–677. 619Google Scholar
Tits, J., and Weiss, R.M. 2002. Moufang polygons. Springer Monographs in Mathematics. Berlin: Springer-Verlag. xiv, 341, 342Google Scholar
Tkachev, V.G. 2014. A Jordan algebra approach to the cubic eiconal equation. J. Algebra, 419, 34–51. 355Google Scholar
Van der Blij, F., and Springer, T.A. 1959. The arithmetics of octaves and of the group G2. Nederl. Akad. Wetensch. Proc. Ser. A 62 = Indag. Math., 21, 406–418. 25, 160, 187, 192, 204Google Scholar
Vasconcelos, W.V. 1969. On finitely generated flat modules. II. An. Acad. Brasil. Ci., 41, 503–504. 46Google Scholar
Vasconcelos, W.V. 1969. On projective modules of finite rank. Proc. Amer. Math. Soc., 22(2), 430–433. 56, 57Google Scholar
Vinberg, E.B. 2017. Non-abelian gradings of Lie algebras. Pages 19–38 of: Fialowski, A., Grabowska, K., Grabowski, J., and Neeb, K.-H. (eds.), 50th Seminar “Sophus Lie”. Banach Center Publications, vol. 113. Warsaw: Polish Academy of Sciences. 615Google Scholar
Vistoli, A. 2005. Grothendieck topologies, fibered categories and descent theory. Pages 1–104 of: Fundamental algebraic geometry. AMS Mathematical Surveys and Monographs, vol. 123. Providence, RI: American Mathematical Society. 596Google Scholar
Warner, F.W. 1983. Foundations of differentiable manifolds and Lie groups. Graduate Texts in Mathematics, vol. 94. New York/Berlin: Springer-Verlag. Corrected reprint of the 1971 edition. 217Google Scholar
Waterhouse, W.C. 1979. Introduction to affine group schemes. Graduate Texts in Mathematics, vol. 66. New York/Berlin: Springer-Verlag. 217, 218, 567, 596, 597Google Scholar
Weiss, Richard, et al. 2023. Jacques Tits (1930–2020). Notices Amer. Math. Soc., 70(1), 77–93. xiiiGoogle Scholar
Westbury, B.W. 2006. Sextonions and the magic square. J. London Math. Soc., 73, 455–474. 158Google Scholar
Witt, E., and Kersten, I. 2013. Ernst Witt: Collected papers — Gesammelte Abhandlungen. Springer Collected Works in Mathematics. Heidelberg: Springer. Reprint of the 1998 edition. 418Google Scholar
Zak, F. L. 1981. Projections of algebraic varieties. Mat. Sb. (N.S.), 116(158)(4), 593–602, 608. xivGoogle Scholar
Zhevlakov, K.A., Slin’ko, A.M., Shestakov, I.P., and Shirshov, A.I. 1982. Rings that are nearly associative. Pure and Applied Mathematics, vol. 104. New York/London: Academic Press [Harcourt Brace Jovanovich, Publishers]. Translated from the Russian by Harry F. Smith. 113, 252Google Scholar
Zorn, M. 1933. Alternativkörper und quadratische Systeme. Abh. Math. Semin. Hamb. Univ., 9, 395–402. 3, 193, 199Google Scholar