Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-30T15:17:04.546Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

2 - Fundamental physics: elementary particles and processes

from I - Preliminaries

Tristan Hübsch
Affiliation:
Howard University, Washington DC
Get access

Summary

This chapter serves to familiarize the Student with the physics of elementary particles, where new concepts are introduced in their historical context and without a precise, technical definition. The subsequent chapters will clarify these concepts with more details, examples and applications.

2.1 The subject matter

The task of elementary particle physics is explaining of what and how the World is fundamentally made. Amazingly, and almost exactly in a Democritean sense, substance (tangible matter) comprises tiny particles, and our task includes a coherent classification:

  1. both a systematic inventory of these “elementary particles,”

  2. and an understanding of the “elementary processes” between them, i.e., their “fundamental interactions.”

In principle, these fundamental interactions determine how collections of otherwise independent elementary particles bind into ever larger structures, to macroscopical and even astronomical proportions. However, all except the teeniest in this hierarchy of structures are outside the scope of this subject.

One must actively keep in mind that the seemingly homogeneous and continuous substance consists of only a few types of particles, amongst which each one occupies but a tiny volume, and between which most of the space is practically empty. Less than a trillionth of the volume of any given substance is occupied by the particles forming the substance. Corresponding to their tininess, these particles come in fantastic numbers, and these countless copies are all identical. Not only “practically equal,” but two particles of the same kind really cannot possibly be distinguished from one another: any one of the 1029−30 electrons in our body is identical and exchangeable with any of the other electrons. It is absolutely impossible to distinguish one electron from another, except by the state in which an electron is and by its interactions with the rest of the considered system. The same holds for protons and neutrons.

We will see that elementary particles are determined by their types of interaction with other particles.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×