Skip to main content Accessibility help
×
Home
Hostname: page-component-684899dbb8-rbzxz Total loading time: 1.042 Render date: 2022-05-22T02:28:41.298Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true }

Section III - The Best Policy

Published online by Cambridge University Press:  25 November 2021

Roy Homburg
Affiliation:
Homerton University Hospital, London
Adam H. Balen
Affiliation:
Leeds Centre for Reproductive Medicine
Robert F. Casper
Affiliation:
Mount Sinai Hospital, Toronto
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

National Institute for Health and Care Excellence. Fertility problems: assessment and treatment. Clinical guideline CG156; updated September 2017. www.nice.org.uk/guidance/cg156.Google Scholar
Wang, R, Danhof, NA, Tjon-Kon-Fat, RI, et al. Interventions for unexplained infertility: a systematic review and network meta-analysis. Cochrane Database of Systematic Reviews 2019, Issue 9. Art. No.: CD012692. DOI: 10.1002/14651858.CD012692.pub2.CrossRefGoogle Scholar
Law, YJ, Zhang, N, Venetis, CA, Chambers, GM, Harris, K. The number of oocytes associated with maximum cumulative live birth rates per aspiration depends on female age: a population study of 221 221 treatment cycles. Hum Reprod. 2019;34(9):1778–87.CrossRefGoogle ScholarPubMed
Smith, ADAC, Tilling, K, Nelson, SM, Lawlor, DA. Live-birth rate associated with repeat in vitro fertilization treatment cycles. JAMA. 2015;314(24):2654–62.CrossRefGoogle ScholarPubMed
Noble, M, Child, T. The role of frozen-thawed embryo replacement cycles in assisted conception. Obstet Gynaecol. 2020;22:5768.Google Scholar
Bahadur, G, Homburg, R, Bosmans, JE, et al. Observational retrospective study of UK national success, risks and costs for 319,105 IVF/ICSI and 30,669 IUI treatment cycles. BMJ Open. 2020;10:e034566.CrossRefGoogle ScholarPubMed
Zegers-Hochschild, F, Adamson, GD, de Mouzon, J, et al. International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertil Steril. 2009 Nov;92(5):1520–24.CrossRefGoogle ScholarPubMed
Reindollar, RH, Regan, MM, Neumann, PJ, et al. A randomized clinical trial to evaluate optimal treatment for unexplained infertility: the fast track and standard treatment (FASTT) trial. Fertil Steril. 2010; 94:888–99.CrossRefGoogle ScholarPubMed
Hansen, KR. Gonadotropins with intrauterine insemination for unexplained infertility-time to stop? Fertil Steril. 2020 February;113(2):333–4.CrossRefGoogle Scholar
Ayeleke, RO, Asseler, JD, Cohlen, BJ, et al. Intra-uterine insemination for unexplained subfertility. Cochrane Database Syst Rev. 2020 March 3;3:CD001838. doi: 10.1002/14651858.CD001838.pub6.Google ScholarPubMed
Adamson, GD, de Mouzon, J, Chambers, G, et al. International Committee for Monitoring Assisted Reproductive Technology: world report on assisted reproductive technology, 2011. Fertil Steril. 2018;110:1067–80.CrossRefGoogle ScholarPubMed
Human Fertilisation and Embryology Authority. Fertility treatment 2017: trends and figures. (May 2019) www.hfea.gov.uk/media/2894/fertility-treatment-2017-trends-and-figures-may-2019.pdf.Google Scholar
El-Toukhy, T, Bhattacharya, S, and Akande, V on behalf of the Royal College of Obstetricians and Gynaecologists. Multiple pregnancies following assisted conception: Scientific Impact Paper No. 22. (2018) www.rcog.org.uk/en/guidelines-research-services/guidelines/sip22.Google Scholar
Cutting, R Single embryo transfer for all. Best Pract Res Clin Obstet Gynaecol. 2018;53:3037.CrossRefGoogle ScholarPubMed
Adashi, EY, Gleicher, N. Is a blanket elective single embryo transfer policy defensible? Rambam Maimonides Med J. 2017;8(2) (open access) doi: 10.5041/RMMJ.10299.CrossRefGoogle ScholarPubMed
Adashi, EY, Gleicher, N. Is a blanket elective single embryo transfer policy defensible? Rambam Maimonides Med J. 2017;8(2).CrossRefGoogle ScholarPubMed
Cutting, R. Single embryo transfer for all. Best Pract Res Clin Obstet Gynaecol. 2018;53:30–7.CrossRefGoogle ScholarPubMed
Wilkinson, D, Schaefer, GO, Tremellen, K, et al. Double trouble: should double embryo transfer be banned? Theor Med Bioeth. 2015;36(2):121–39.CrossRefGoogle ScholarPubMed
Ezugwu, E, der Burg, SV. Debating elective single embryo transfer after in vitro fertilization: a plea for a context-sensitive approach. Ann Med Health Sci Res. 2015;5(1):17.CrossRefGoogle ScholarPubMed
Tannus, S, Son, WY, Dahan, MH. Elective single blastocyst transfer in advanced maternal age. J Assist Reprod Genet. 2017;34(6):741–8.CrossRefGoogle ScholarPubMed
Devroey, P, Polyzos, NP, Blockeel, C. An OHSS-free clinic by segmentation of IVF treatment. Hum Reprod. 2011;26:2593–7.CrossRefGoogle ScholarPubMed
Roque, M, Haahr, T, Geber, S, Esteves, SC, Humaidan, P. Fresh versus elective frozen embryo transfer in IVF/ICSI cycles: A systematic review and meta-analysis of reproductive outcomes. Hum Reprod Update. 2019;25:214.CrossRefGoogle ScholarPubMed
Blockeel, C, Campbell, A, Coticchio, G, et al. Should we still perform fresh embryo transfers in ART? Hum Reprod. 2019; 34: 2319–29.CrossRefGoogle ScholarPubMed
Maheshwari, A, Pandey, S, Raja, EM, Shetty, A, Hamilton, M, Bhattacharya, S. Is frozen embryo transfer better for mothers and babies? Can cumulative meta-analysis provide a definitive answer? Hum Reprod Update. 2018;24:35–8.CrossRefGoogle ScholarPubMed
Roque, M, Bedoschi, G, Cecchino, GN, Esteves, SC. Fresh versus frozen blastocyst transfer. Lancet. 2019;394:1227–18.CrossRefGoogle ScholarPubMed
Roque, M, Valle, M, Sampaio, M, Geber, S. Does freeze-all policy affect IVF outcome in poor ovarian responders? Ultrasound Obstet Gynecol. 2018;52(4):530–4.CrossRefGoogle ScholarPubMed
Healy, DL, Breheny, S, Halliday, J, et al. Prevalence and risk factors for obstetric haemorrhage in 6730 singleton births after assisted reproductive technology in Victoria Australia. Hum Reprod. 2010;25(1):265–74.CrossRefGoogle ScholarPubMed
Chen, Z-J, Shi, Y, Sun, Y, et al. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med. 2016;375(6):523–33.CrossRefGoogle ScholarPubMed
Yarali, H, Polat, M, Mumusoglu, S, Yarali, I, Bozdag, G. Preparation of endometrium for frozen embryo replacement cycles: a systematic review and meta-analysis. J Assist Reprod Genet. 2016;33(10):1287–304.CrossRefGoogle ScholarPubMed
Munné, S, Kaplan, B, Frattarelli, JL, et al. STAR Study Group: Preimplantation genetic testing for aneuploidy versus morphology as selection criteria for single frozen-thawed embryo transfer in good-prognosis patients: a multicenter randomized clinical trial. Fertil Steril. 2019 Dec;112(6):1071–9.CrossRefGoogle Scholar
Scott, R, Navot, D, Liu, HC, Rosenwaks, Z. A human in vivo model for the luteoplacental shift. Fertil Steril. 1991;56:481–4.CrossRefGoogle Scholar
Vaisbuch, E, de Zeigler, D, Leong, M, Weissman, A, Shoham, Z. Luteal-phase support in ART: real life practices reported worldwide by an updated website-based survey. Reprod Biomed Online. 2014;28:330–5.CrossRefGoogle ScholarPubMed
Nyboe Andersen, A, Popovic-Todorovic, B, Schmidt, KT, et al. Progesterone supplementation during early gestations after IVF or ICSI has no effect on the delivery rates: a randomized controlled trial. Hum Reprod. 2002;17:357–61.CrossRefGoogle ScholarPubMed
Aboulghar, M, Amin, Y, Al-Inany, H, et al. Prospective randomized study comparing luteal phase support for ICSI patients up to the first ultrasound compared with an additional three weeks. Hum Reprod. 2008;23:857–62.CrossRefGoogle ScholarPubMed
Goudge, C, Nagel, T, Damario, M. Duration of progesterone-in-oil support after in vitro fertilization and embryo transfer: a randomized, controlled trial. Fertil Steril. 2010;94:946–51.CrossRefGoogle ScholarPubMed
Kyrou, D, Fatemi, H, Zepiridis, L, et al. Does cessation of progesterone supplementation during early pregnancy in patients treated with recFSH/GnRH antagonist affect ongoing pregnancy rates? A randomized controlled trial. Hum Reprod. 2011;26:1020–4.CrossRefGoogle ScholarPubMed
Kohls, G, Ruiz, F, Martínez, M, et al. Early progesterone cessation after in vitro fertilization/intracytoplasmic sperm injection: a randomized, controlled trial. Fertil Steril. 2012;98:858–62.CrossRefGoogle ScholarPubMed
Liu, X, Mu, H, Shi, Q, et al. The optimal duration of progesterone supplementation in pregnant women after IVF/ICSI: a meta-analysis. Reprod Biol Endocrinol. 2012;10:107.CrossRefGoogle ScholarPubMed
Weissman, A, Loumaye, E, Shoham, Z. Recovery of corpus luteum function after prolonged deprivation from gonadotrophin stimulation. Hum Reprod. 1996;11:943–9.CrossRefGoogle ScholarPubMed
Vaisbuch, E, de Ziegler, D, Leong, M, Weissman, A, Shoham, Z. Luteal-phase support in assisted reproduction treatment: real-life practices reported worldwide by an updated website-based survey. Reprod Biomed. 2014;28:330–5.CrossRefGoogle ScholarPubMed
Watters, M, Noble, M, Child, T, Nelson, S. Short versus extended progesterone supplementation for luteal phase support in fresh IVF cycles: a systematic review and meta-analysis. Reproduct Biomed. 2019.CrossRefGoogle Scholar
Griesinger, G. Editorial commentary: is it time to abandon progesterone supplementation of early pregnancy after IVF? Hum Reprod. 2011;26:1017–19.CrossRefGoogle ScholarPubMed
Neumann, K, Depenbusch, M, Schultze-Mosgau, A, Griesinger, G. Characterization of early pregnancy placental progesterone production by utilization of dydrogesterone in programmed frozen-thawed embryo transfer cycles. Reprod Biomed. 2020.CrossRefGoogle Scholar
Orvieto, R, Fisch, B, Feldberg, D. Endometrial preparation for patients undergoing frozen-thawed embryo transfer cycles. In: The Art & Science of Assisted Reproductive Techniques. Allahbadia, G., Basuray, R., Merchant, R., eds. Jaypee Brothers Medical Publishers (P) Ltd. New Delhi, India, 2003, pp. 396–9.Google Scholar
Groenewoud, ER, Cantineau, AE, Kollen, BJ, Macklon, NS, Cohlen, BJ. What is the optimal means of preparing the endometrium in frozen-thawed embryo transfer cycles? A systematic review and meta-analysis. Hum Reprod Update. 2017;23(2):255–61.Google ScholarPubMed
Orvieto, R, Feldman, N, Lantsberg, D, Manela, D, Zilberberg, E, Haas, J. Natural cycle frozen-thawed embryo transfer-can we improve cycle outcome? J Assist Reprod Genet. 2016;33(5):611–15.CrossRefGoogle ScholarPubMed
Melnick, AP, Setton, R, Stone, LD, et al. Replacing single frozen-thawed euploid embryos in a natural cycle in ovulatory women may increase live birth rates compared to medicated cycles in anovulatory women. J Assist Reprod Genet. 2017;34(10):1325–31.CrossRefGoogle Scholar
Saito, K, Kuwahara, A, Ishikawa, T, et al. Endometrial preparation methods for frozen-thawed embryo transfer are associated with altered risks of hypertensive disorders of pregnancy, placenta accreta, and gestational diabetes mellitus. Hum Reprod. 2019;34(8):1567–75.CrossRefGoogle ScholarPubMed
Groenewoud, ER, Cantineau, AE, Kollen, BJ, Macklon, NS, Cohlen, BJ. What is the optimal means of preparing the endometrium in frozen-thawed embryo transfer cycles? A systematic review and meta-analysis. Hum Reprod Update. 2013;19(5):458–70.CrossRefGoogle ScholarPubMed
Erratum in: Hum Reprod Update. 2017;23(2):255–61.Google Scholar
Groenewoud, ER, Cohlen, BJ, Al-Oraiby, A, et al. A randomized controlled, non-inferiority trial of modified natural versus artificial cycle for cryo-thawed embryo transfer. Hum Reprod. 2016;31(7):1483–92.CrossRefGoogle ScholarPubMed
Groenewoud, ER, Cohlen, BJ, Al-Oraiby, A, et al. Influence of endometrial thickness on pregnancy rates in modified natural cycle frozen-thawed embryo transfer. Acta Obstet Gynecol Scand. 2018;97(7):808–15.CrossRefGoogle ScholarPubMed
Miller, PB, Soules, MR. The usefulness of a urinary LH kit for ovulation prediction during menstrual cycles of normal women. Obstet Gynecol. 1996;87:1317.CrossRefGoogle ScholarPubMed
Braude, P. One child at a time. Reducing multiple births after IVF. Report of the Expert Group on Multiple Births after IVF. London: HFEA, 2006. [www.oneatatime.org.uk/images/MBSET_report_Final_Dec_06.pdf]Google Scholar
Hayashi, M, Nakai, A, Satoh, S, Matsuda, Y. Adverse obstetric and perinatal outcomes of singleton pregnancies may be related to maternal factors associated with infertility rather than the type of assisted reproductive technology procedure used. Fertil Steril. 2012;98:922–8.CrossRefGoogle Scholar
NICE. Caesarean section. Clinical guideline [CG132] NICE, 2011.Google Scholar
RCOG. In Vitro Fertilisation: Perinatal Risks and Early Childhood Outcomes. Scientific Impact Paper No. 8, May 2012.Google Scholar
National Institute for Clinical Excellence (NICE). Caesarean section Clinical guideline [CG132] Published date: November 2011 Last updated: September 2019.Google Scholar
MacDorman, MF, Menacker, F, Declercq, E. Cesarean birth in the United States: epidemiology, trends, and outcomes. Clin Perinatol. 2008;35(2):293307.CrossRefGoogle Scholar
Pandey, S, Shetty, A, Hamilton, M, Bhattacharya, S, Maheshwari, A. Obstetric and perinatal outcomes in singleton pregnancies resulting from IVF/ICSI: a systematic review and meta-analysis. Hum Reprod Update. 2012;18(5):485503.CrossRefGoogle ScholarPubMed
Cromi, A, Marconi, N, Casarin, J, et al. Maternal intra‐ and postpartum near‐miss following assisted reproductive technology: a retrospective study. BMJ. 2018; 125:12.Google ScholarPubMed
Szymusik, I, Kosinska-Kaczynska, K, Krowicka, M, et al. Perinatal outcome of in vitro fertilization singletons – 10 years’ experience of one center. Arch Med Sci. 2019;15(3):666–72.CrossRefGoogle ScholarPubMed
Sallam, HN, Garcia-Velasco, JA, Dias, S, Arici, A. Long-term pituitary down-regulation before in vitro fertilization (IVF) for women with endometriosis. Cochrane Database Syst Rev. 2006 Jan 25;(1):CD004635.CrossRefGoogle Scholar
Senapati, S, Sammel, MD, Morse, C, Barnhart, KT. Impact of endometriosis on in vitro fertilization outcomes: an evaluation of the Society for Assisted Reproductive Technologies Database. Fertil Steril. 2016 July;106(1):164–71.CrossRefGoogle Scholar
de Ziegler, D, Gayet, V, Aubriot, FX, et al. Use of oral contraceptives in women with endometriosis before assisted reproduction treatment improves outcomes. Fertil Steril. 2010 Dec;94(7):2796–9.CrossRefGoogle ScholarPubMed
Georgiou, EX, Melo, P, Baker, PE, et al. Long-term GnRH agonist therapy before in vitro fertilisation (IVF) for improving fertility outcomes in women with endometriosis. Cochrane Database Syst Rev. 2019 Nov 20;2019(11).Google ScholarPubMed
Van der Houwen, LEE, Lier, MCI, Schreurs, AMF, et al. Continuous oral contraceptives versus long-term pituitary desensitization prior to IVF/ICSI in moderate to severe endometriosis: study protocol of a non-inferiority randomized controlled trial. Hum Reprod Open. 2019 Feb 23;2019(1):hoz001.CrossRefGoogle ScholarPubMed
Georgiou, EX, Melo, P, Baker, PE, et al. Long-term GnRH agonist therapy before in vitro fertilisation (IVF) for improving fertility outcomes in women with endometriosis. Cochrane Database Syst Rev. 2019;11:CD013240.Google Scholar
Senapati, S, Sammel, MD, Morse, C, Barnhart, KT. Impact of endometriosis on in vitro fertilization outcomes: an evaluation of the Society for Assisted Reproductive Technologies Database. Fertil Steril. 2016;106:164–71.e1.CrossRefGoogle Scholar
Ghobara, T, Gelbaya, TA, Ayeleke, RO. Cycle regimens for frozen-thawed embryo transfer. Cochrane Database Syst Rev. 2017;7:CD003414.Google ScholarPubMed
Roque, M, Haahr, T, Geber, S, Esteves, SC, Humaidan, P. Fresh versus elective frozen embryo transfer in IVF/ICSI cycles: a systematic review and meta-analysis of reproductive outcomes. Hum Reprod Update. 2019;25:214.CrossRefGoogle ScholarPubMed
Khan, KN, Fujishita, A, Hiraki, K, et al. Bacterial contamination hypothesis: a new concept in endometriosis. Reprod Med Biol. 2018;17:125–33.CrossRefGoogle ScholarPubMed
Kitajima, M, Defrere, S, Dolmans, MM, et al. Endometriomas as a possible cause of reduced ovarian reserve in women with endometriosis. Fertil Steril. 2011;96:685–91.CrossRefGoogle ScholarPubMed
Duffy, JM, Arambage, K, Correa, FJ, et al. Laparoscopic surgery for endometriosis. Cochrane Database Syst Rev. 2014;4:CD011031.Google Scholar
Muteshi, CM, Ohuma, EO, Child, T, Becker, CM. The effect of endometriosis on live birth rate and other reproductive outcomes in ART cycles: a cohort study. Hum Reprod Open. 2018 Sept 29;2018(4).CrossRefGoogle ScholarPubMed
Opøien, HK, Fedorcsak, P, Byholm, T, Tanbo, T. Complete surgical removal of minimal and mild endometriosis improves outcome of subsequent IVF/ICSI treatment. Reprod Biomed. 2011;23:389.e95.CrossRefGoogle ScholarPubMed
Barri, PN, Coroleu, B, Tur, R, Barri-Soldevila, PN, Rodríguez, I.Endometriosis-associated infertility: surgery and IVF, a comprehensive therapeutic approach. Reprod Biomed. 2010 Aug;21(2):179–85.CrossRefGoogle ScholarPubMed
Meuleman, C, Vandenabeele, B, Fieuws, S, Spiessens, C, Timmerman, D, D’Hooghe, T. High prevalence of endometriosis in infertile women with normal ovulation and normospermic partners. Fertil Steril. 2009;92:6874.CrossRefGoogle ScholarPubMed
Duffy, J, Arambage, K, Correa, F, et al. Laparoscopic surgery for endometriosis. Cochrane Database Syst Rev. 2014:79.CrossRefGoogle Scholar
Leonardi, M, Gibbons, T, Armour, M, et al. When to do surgery and when not to do surgery for endometriosis: a systematic review and meta-analysis. J Minim Invasive Gynecol. 2020;27:390407.e3.CrossRefGoogle Scholar
Lalani, S, Choudhry, AJ, Firth, B, et al. Endometriosis and adverse maternal, fetal and neonatal outcomes, a systematic review and meta-analysis. Hum Reprod. 2018;33:1854–65.CrossRefGoogle ScholarPubMed
Moini, A, Bahar, L, Ashrafinia, M, Eslami, B, Hosseini, R, Ashrafinia, N. Fertility outcome after operative laparoscopy versus no treatment in infertile women with minimal or mild endometriosis. Int J Fertil Steril. 2012;5:235–40.Google ScholarPubMed
Parazzini, F, Fedele, L, Busacca, M, et al. Postsurgical medical treatment of advanced endometriosis: results of a randomized clinical trial. Am J Obstet Gynecol. 1994;171(5):1205–7.CrossRefGoogle ScholarPubMed
Marcoux, S, Maheux, R, Bérubé, S. Laparoscopic surgery in infertile women with minimal or mild endometriosis. Canadian Collaborative Group on Endometriosis. N Eng J Med. 1997;337(4):217–22.CrossRefGoogle ScholarPubMed
Donnez, J, Dolmans, MM. Uterine fibroid management: from the present to the future. Hum Reprod Update. 2016;22:665–86.CrossRefGoogle Scholar
Pritts, EA, Parker, WH, Olive, DL. Fibroids and infertility: an updated systematic review of the evidence. Fertil Steril. 2009;91:1215–23.CrossRefGoogle Scholar
Donnez, J, Dolmans, MM. Hormone therapy for intramural myoma-related infertility from ulipristal acetate to GnRH antagonist: a review. RBMonline. 2020. https://doi.org/10.1016/j.rbmo.2020.05.017 1472-6483/CrossRefGoogle Scholar
Taylor, HS. Fibroids: when should they be removed to improve in vitro fertilization success? Fertil Steril. 2018;109:784–5.CrossRefGoogle ScholarPubMed
Wang, X, Chen, L, Wang, H, Li, Q, Liu, X, Qi, H. The impact of noncavity-distorting intramural fibroids on the efficacy of in vitro fertilization-embryo transfer: an updated meta-analysis. Biomed Res Int. 2018;2018:8924703 Online.Google ScholarPubMed
Rikhraj, K, Tan, J, Taskin, O, Albert, AY, Yong, P, Bedaiwy, MA. The impact of non cavity-distorting intramural fibroids on live birth rate in in vitro fertilization cycles: a systematic review and meta-analysis. J Women’s Health (Larchmt). 2020;29:210–19.CrossRefGoogle Scholar
Pritts, EA, Parker, WH, Olive, DL. Fibroids and infertility: an updated systematic review of the evidence. Fertil Steril. 2009;91:1215–23.CrossRefGoogle Scholar
Sunkara, SK, Khairy, M, El-Toukhy, T, Khalaf, Y, Coomarasamy, A. The effect of intramural fibroids without uterine cavity involvement on the outcome of IVF treatment: a systematic review and meta-analysis. Hum Reprod. 2010;25:418–29.CrossRefGoogle ScholarPubMed
Donnez, J, Jadoul, P. What are the implications of myomas on fertility? A need for a debate?Hum Reprod. 2002;17:1424–30.CrossRefGoogle ScholarPubMed
Metwally, M, Farquhar, CM, Li, TC. Is another meta-analysis on the effects of intramural fibroids on reproductive outcomes needed? Reprod Biomed. 2011;23:214.CrossRefGoogle ScholarPubMed
Wang, X, Chen, L, Wang, H, Li, Q, Liu, X, Qi, H. The impact of noncavity-distorting intramural fibroids on the efficacy of in vitro fertilization-embryo transfer: an updated meta-analysis. Biomed Res Int. 2018;2018:8924703.Google ScholarPubMed
Chan, YY, Jayaprakasan, K, Zamora, J, Thornton, JG, Raine-Fenning, N, Coomarasamy, A. The prevalence of congenital uterine anomalies in unselected and high-risk populations: a systematic review. Hum Reprod Update. [Internet] 2011;17(6):761–71. Available from: www.ncbi.nlm.nih.gov/pubmed/21705770.CrossRefGoogle ScholarPubMed
Chan, YY, Jayaprakasan, K, Tan, A, Thornton, JG, Coomarasamy, A, Raine-Fenning, NJ. Reproductive outcomes in women with congenital uterine anomalies: a systematic review. Ultrasound Obs Gynecol. [Internet] 2011;38(4):371–82. Available from: www.ncbi.nlm.nih.gov/pubmed/21830244.Google ScholarPubMed
Valle, RF, Ekpo, GE. Hysteroscopic metroplasty for the septate uterus: review and meta-analysis. J Minim Invasive Gynecol. [Internet] 2013;20(1):2242. Available from: www.ncbi.nlm.nih.gov/pubmed/23312243.CrossRefGoogle ScholarPubMed
Rikken, JFW, Leeuwis-Fedorovich, NE, Letteboer, S, et al. The pathophysiology of the septate uterus: a systematic review. BJOG. 2019;126:1192–9.CrossRefGoogle ScholarPubMed
Rikken, JFW, Kowalik, CR, Emanuel, MH, et al. Septum resection for women of reproductive age with a septate uterus. Cochrane Database Syst Rev. 2017;(1). Art. No.: CD008576. DOI: 10.1002/14651858.CD008576.pub4.CrossRefGoogle Scholar
Rikken, JFW, Verhorstert, KWJ, Emanuel, MH, et al. Septum resection in women with a septate uterus: a cohort study. Human Reprod. 2020;35(7):1578–88.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×