Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-29T12:51:17.242Z Has data issue: false hasContentIssue false

17 - Optical Properties of TMD Heterostructures

from Part II

Published online by Cambridge University Press:  22 June 2017

Phaedon Avouris
Affiliation:
IBM T. J. Watson Research Center, New York
Tony F. Heinz
Affiliation:
Stanford University, California
Tony Low
Affiliation:
University of Minnesota
Get access
Type
Chapter
Information
2D Materials
Properties and Devices
, pp. 310 - 328
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

17.5 References

Geim, A. K. and Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419425 (2013).Google Scholar
Britnell, L. et al. Strong light–matter interactions in heterostructures of atomically thin films. Science 340, 13111314 (2013).Google Scholar
Novoselov, K. S. and Castro Neto, A. H. Two-dimensional crystals-based heterostructures: materials with tailored properties. Physica Scripta T146, 014006 (2012).CrossRefGoogle Scholar
Amin, B., Singh, N. and Schwingenschlögl, U. Heterostructures of transition metal dichalcogenides. Physical Review B 92, 075439 (2015).CrossRefGoogle Scholar
Chiu, M. H. et al. Determination of band alignment in the single-layer MoS2/WSe2 heterojunction. Nature Communications 6, 7666 (2015).Google Scholar
Constantinescu, G. C. and Hine, N. D. M. Energy landscape and band-structure tuning in realistic MoS2/MoSe2 heterostructures. Physical Review B 91, 195416 (2015).CrossRefGoogle Scholar
Gong, C. et al. Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors. Applied Physics Letters 103, 053513 (2013).CrossRefGoogle Scholar
Kang, J., Tongay, S., Zhou, J., Li, J., and Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Applied Physics Letters 102, 012111012114 (2013).Google Scholar
Komsa, H.-P. and Krasheninnikov, A. V. Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles. Physical Review B 88, 085315 (2013).Google Scholar
Kośmider, K. and Fernández-Rossier, J. Electronic properties of the MoS2–WS2 heterojunction. Physical Review B 87, 075451 (2013).Google Scholar
Terrones, H., Lopez-Urias, F., and Terrones, M. Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Scientific Reports 3, 1549 (2013).Google Scholar
Debbichi, L., Eriksson, O., and Lebègue, S. Electronic structure of two-dimensional transition metal dichalcogenide bilayers from ab initio theory. Physical Review B 89, 205311 (2014).Google Scholar
Yu, H., Wang, Y., Tong, Q., Xu, X., and Yao, W. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Physical Review Letters 115, 187002 (2015).Google Scholar
Mak, K. F., Lee, C., Hone, J., Shan, J., and Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters 105, 136805 (2010).Google Scholar
Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Letters 10, 12711275 (2010).Google Scholar
Liu, G. B., Xiao, D., Yao, Y., Xu, X., and Yao, W. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chemical Society Reviews 44, 26432663 (2015).Google Scholar
Mattheiss, L. F. Band Structures of Transition-Metal-Dichalcogenide Layer Compounds. Physical Review B 8, 37193740 (1973).CrossRefGoogle Scholar
Xiao, D., Liu, G. B., Feng, W., Xu, X., and Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Physical Review Letters 108, 196802 (2012).Google Scholar
Wilson, N. R. et al. Band parameters and hybridization in 2D semiconductor heterostructures from photoemission spectroscopy. arXiv:1601.05865 (2016).Google Scholar
Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614617 (2013).Google Scholar
Zomer, P. J., Guimarães, M. H. D., Brant, J. C., Tombros, N., and van Wees, B. J. Fast pick up technique for high quality heterostructures of bilayer graphene and hexagonal boron nitride. Applied Physics Letters 105, 013101 (2014).Google Scholar
Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N., and Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology 7, 699712 (2012).Google Scholar
Kumar, N. et al. Second harmonic microscopy of monolayer MoS2. Physical Review B 87 (2013).Google Scholar
Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Letters 13, 33293333 (2013).CrossRefGoogle ScholarPubMed
Malard, L. M., Alencar, T. V., Barboza, A. P. M., Mak, K. F., and de Paula, A. M. Observation of intense second harmonic generation from MoS2 atomic crystals. Physical Review B 87 (2013).Google Scholar
Lin, Y. C. et al. Atomically thin resonant tunnel diodes built from synthetic van der Waals heterostructures. Nature Communications 6, 7311 (2015).Google Scholar
Yu, Y. et al. Equally efficient interlayer exciton relaxation and improved absorption in epitaxial and nonepitaxial MoS2/WS2 heterostructures. Nano Letters 15, 486491 (2015).Google Scholar
Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nature Materials 13, 11351142 (2014).CrossRefGoogle ScholarPubMed
Ceballos, F., Bellus, M. Z., Chiu, H. Y., and Zhao, H. Ultrafast charge separation and indirect exciton formation in a MoS2–MoSe2 van der Waals heterostructure. ACS Nano 8, 1271712724 (2014).Google Scholar
Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nature Nanotechnology 9, 682686 (2014).Google Scholar
Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nature Communications 6, 6242 (2015).Google Scholar
Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proceedings of the National Academy of Sciences of the United States of America 111, 61986202 (2014).Google Scholar
Chiu, M. H. et al. Spectroscopic signatures for interlayer coupling in MoS2–WSe2 van der Waals stacking. ACS Nano 8, 96499656 (2014).Google Scholar
Lee, C. H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nature Nanotechnology 9, 676681 (2014).CrossRefGoogle ScholarPubMed
Furchi, M. M., Pospischil, A., Libisch, F., Burgdorfer, J., and Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Letters 14, 47854791 (2014).Google Scholar
Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p–n diodes. Nano Letters 14, 55905597 (2014).Google Scholar
Heo, H. et al. Interlayer orientation-dependent light absorption and emission in monolayer semiconductor stacks. Nature Communications 6, 7372 (2015).Google Scholar
Ceballos, F., Bellus, M. Z., Chiu, H. Y., and Zhao, H. Probing charge transfer excitons in a MoSe2–WS2 van der Waals heterostructure. Nanoscale 7, 1752317528 (2015).CrossRefGoogle Scholar
Butov, L. V., Gossard, A. C., and Chemla, D. S. Macroscopically ordered state in an exciton system. Nature 418, 751754 (2002).Google Scholar
Snoke, D., Denev, S., Liu, Y., Pfeiffer, L., and West, K. Long-range transport in excitonic dark states in coupled quantum wells. Nature 418, 754757 (2002).Google Scholar
Leonard, J. R. et al. Spin transport of excitons. Nano Letters 9, 42044208 (2009).Google Scholar
Schuller, J. A. et al. Orientation of luminescent excitons in layered nanomaterials. Nature Nanotechnology 8, 271276 (2013).Google Scholar
Xu, X., Yao, W., Xiao, D., and Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nature Physics 10, 343350 (2014).CrossRefGoogle Scholar
Rivera, P. R. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351 (6274), 688691 (2015).Google Scholar
Dufferwiel, S. et al. Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities. Nature Communications 6 (2015).Google Scholar
Palummo, M., Bernardi, M., and Grossman, J. C. Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. Nano Letters 15, 27942800 (2015).CrossRefGoogle ScholarPubMed
Moody, G. et al. Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides. Nature Communications 6 (2015).Google Scholar
Korn, T., Heydrich, S., Hirmer, M., Schmutzler, J., and Schüller, C. Low-temperature photocarrier dynamics in monolayer MoS2. Applied Physics Letters 99, 102109 (2011).Google Scholar
Fogler, M. M., Butov, L. V., and Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nature Communications 5, 4555 (2014).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×