Skip to main content Accessibility help
  • This chapter is unavailable for purchase
  • Print publication year: 2000
  • Online publication date: June 2011

15 - Fungi as symbionts and predators of animals

from Part V - Fungi as saprotrophs, symbionts and pathogens


This chapter deals with fungal co-operative ventures, including ant agriculture, termite gardeners and agriculture in beetles. An important co-evolutionary story is that linking anaerobic fungi, the evolution of grasses and the rise of the ruminants. It is a fascinating story that links with human evolution since humans use cereal grasses as staple foods and selected their main food animals from among the ruminants. Finally, we look at the predatory nematode-trapping fungi.

Fungi have coexisted with animals and plants throughout the whole of the evolutionary time since these three groups of higher organisms originally separated from one another. Living together closely for this length of time has given rise to many co-operative ventures. We have already seen how many fungi have combined with plants as partners in mutually beneficial relationships such as mycorrhizas and lichens. In these symbiotic or mutualistic associations the partners each gain something from the partnership so that the association is more successful than either organism alone. The organisms concerned (often two but sometimes more) live in such close proximity to each other that their cells may intermingle and may even contribute to the formation of joint tissues, as they do in the lichen thallus, which is one of the most ancient mutualistic associations of all and found in some of the most inhospitable environments.

References and further reading
Aanen, D. K., Eggleton, P., Rouland- Lefèvre, C., Guldberg- Frøslev, T., Rosendahl, S. & Boomsma, J. J. (2002). The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proceedings of the National Academy of Sciences of the United States of America, 99: 14 887–14 892. DOI:
Aanen, D. K., Ros, V. I. D., Fine Licht, H. H., Mitchell, J., Beer, Z. W., Slippers, B., Rouland-LeFèvre, C. & Boomsma, J. J. (2007). Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa. BMC Evolutionary Biology, 7: 115. DOI:
Bass, M. & Cherrett, J. M. (1996). Leaf-cutting ants (Formicidae, Attini) prune their fungus to increase and direct its productivity. Functional Ecology, 10: 55–61. Stable URL:
Bignell, D. E. (2000). Ecology of prokaryotic microbes in the guts of wood and litter-feeding termites. In: Termites: Evolution, Sociality, Symbioses, Ecology (eds. Abe, T., Bignell, D. E. & Higashi, M.), pp. 189–208. Dordrecht: Kluwer. ISBN-10: 0792363612, ISBN-13: 9780792363613.
Bobe, R. (2006). The evolution of arid ecosystems in eastern Africa. Journal of Arid Environments, 66: 564–584. DOI:
Bobe, R. & Behrensmeyer, A. K. (2004). The expansion of grassland ecosystems in Africa in relation to mammalian evolution and the origin of the genus Homo. Palaeogeography, Palaeoclimatology, Palaeoecology, 207: 399–420. DOI:
Bobe, R. & Eck, G. G. (2001). Responses of African bovids to Pliocene climatic change. Paleobiology, 27 (Supplement): 1–47. Stable URL:
Bretherton, S., Tordoff, G. M., Jones, T. H. & Boddy, L. (2006). Compensatory growth of Phanerochaete velutina mycelial systems grazed by Folsomia candida (Collembola). FEMS Microbiology Ecology, 58: 33–40. DOI:
Cerling, T. E. (1992). Development of grasslands and savannas in East Africa during the Neogene. Palaeogeography, Palaeoclimatology, Palaeoecology, 97: 241–247. DOI:
Currie, C. R. (2001). A community of ants, fungi, and bacteria: a multilateral approach to studying symbiosis. Annual Review of Microbiology, 55: 357–380. DOI:
Currie, C. R., Wong, B., Stuart, A. E., Schultz, T. R., Rehner, S. A., Mueller, U. G., Sung, G.-H., Spatafora, J. W. & Straus, N. A. (2003). Ancient tripartite coevolution in the attine ant–microbe symbiosis. Science, 299: 386–388. DOI:
Currie, C. R., Poulsen, M., Mendenhall, J., Boomsma, J. J. & Billen, J. (2006). Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science, 311: 81–83. DOI:
Farrell, B. D., Sequeira, A. S., O'Meara, B. C., Normark, B. B., Chung, J. H. & Jordal, B. H. (2001). The evolution of agriculture in beetles (Curculionidae: Scolytinae and Platypodinae). Evolution, 55: 2011–2027. DOI:[2011:TEOAIB]2.0.CO;2.
Fisher, P. J., Stradling, D. J. & Pegler, D. N. (1994). Leucoagaricus basidiomata from a live nest of the leaf-cutting ant Atta cephalotes. Mycological Research, 98: 884–888. DOI:
Foster, J. W. (1949). Chemical Activities of Fungi. New York: Academic Press. ASIN: B0007DOOWK.
Franz-Odendaal, T. A., Lee-Thorp, J. A. & Chinsamy, A. (2002). New evidence for the lack of C4 grassland expansions during the early Pliocene at Laangebaanweg, South Africa. Paleobiology, 28: 378–388. Stable URL:
Hanson, A. M., Hodge, K. T. & Porter, L. M. (2003). Mycophagy among primates. Mycologist, 17: 6–10. DOI:
Ho, Y. W. & Barr, D. J. S. (1995). Classification of anaerobic gut fungi from herbivores with emphasis on rumen fungi from Malaysia. Mycologia, 87: 655–677. Stable URL:
Jacobs, B. F. (2004). Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philosophical Transactions of the Royal Society of London, Series B, 359: 1573–1583. Stable URL:
James, T. Y., Letcher, P. M., Longcore, J. E., Mozley-Standridge, S. E., Porter, D., Powell, M. J., Griffith, G. W. & Vilgalys, R. (2006). A molecular phylogeny of the flagellated fungi (Chytridiomycota) and description of a new phylum (Blastocladiomycota). Mycologia, 98: 860–871. URL:
Kumpula, J. (2001). Winter grazing of reindeer in woodland lichen pasture: effect of lichen availability on the condition of reindeer. Small Ruminant Research, 39: 121–130. DOI:
Larsen, M. (2006). Biological control of nematode parasites in sheep. Journal of Animal Science, 84: E133-E139. DOI:
Lemons, A., Clay, K. & Rudgers, J. A. (2005). Connecting plant–microbial interactions above and belowground: a fungal endophyte affects decomposition. Oecologia, 145: 595–604. DOI:
Li, Y., Hyde, K. D., Jeewon, R., Cai, L., Vijaykrishna, D. & Zhang, K. (2005). Phylogenetics and evolution of nematode-trapping fungi (Orbiliales) estimated from nuclear and protein coding genes. Mycologia, 97: 1034–1046. DOI:
Mackie, R. I. (2002). Mutualistic fermentative digestion in the gastrointestinal tract: diversity and evolution. Integrative and Comparative Biology, 42: 319–326. DOI:
Mueller, U. G. & Rabeling, C. (2008). A breakthrough innovation in animal evolution. Proceedings of the National Academy of Sciences of the United States of America, 105: 5287–5288. DOI:
Mueller, U. G., Schultz, T. R., Currie, C. R., Adams, R. M. M. & Malloch, D. (2001). The origin of the attine ant–fungus mutualism. Quarterly Review of Biology, 76: 169–197. Stable URL:
Munkacsi, A. B., Pan, J. J., Villesen, P., Mueller, U. G., Blackwell, M. & McLaughlin, D. J. (2004). Convergent coevolution in the domestication of coral mushrooms by fungus-growing ants. Proceedings of the Royal Society of London, Series B, 271: 1777–1782. DOI:
Nordbring-Hertz, B. (2004). Morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora: an extensive plasticity of infection structures. Mycologist, 18: 125–133. DOI:
Oksanen, I. (2006). Ecological and biotechnological aspects of lichens. Applied Microbiology and Biotechnology, 73: 723–734. DOI:
Olofsson, J. (2006). Short- and long-term effects of changes in reindeer grazing pressure on tundra heath vegetation. Journal of Ecology, 94: 431–440. DOI:
Orpin, C. G. (1975). Studies on the rumen flagellate Neocallimastix frontalis. Journal of General Microbiology, 91: 249–262. DOI:
Ozkose, E., Thomas, B. J., Davies, D. R., Griffith, G. W. & Theodorou, M. K. (2001). Cyllamyces aberensis gen. nov. sp. nov., a new anaerobic gut fungus with branched sporangiophores isolated from cattle. Canadian Journal of Botany, 79: 666–673. DOI:
Pagnocca, F. C., Bacci, M., Fungaro, M. H., Bueno, O. C., Hebling, M. J., Sant'anna, A. & Capelari, M. (2001). RAPD analysis of the sexual state and sterile mycelium of the fungus cultivated by the leaf-cutting ant Acromyrmex hispidus fallax. Mycological Research, 105: 173–176. DOI:
Rezaeian, M., Beakes, G. W. & Parker, D. S. (2004a). Methods for the isolation, culture and assessment of the status of anaerobic rumen chytrids in both in vitro and in vivo systems. Mycological Research, 108: 1215–1226. DOI:
Rezaeian, M., Beakes, G. W. & Parker, D. S. (2004b). Distribution and estimation of anaerobic zoosporic fungi along the digestive tracts of sheep. Mycological Research, 108: 1227–1233. DOI:
Schmidt, A. R., Dorfelt, H. & Perrichot, V. (2007). Carnivorous fungi from Cretaceous amber. Science, 318: 1743. DOI:
Schultz, T. R. & Brady, S. G. (2008). Major evolutionary transitions in ant agriculture. Proceedings of the National Academy of Sciences of the United States of America, 105: 5435–5440. DOI:
Shearer, C. A., Descals, E., Kohlmeyer, B., Kohlmeyer, J., Marvanová, L., Padgett, D., Porter, D., Raja, H. A., Schmit, J. P., Thorton, H. A. & Voglmayr, H. (2007). Fungal biodiversity in aquatic habitats. Biodiversity and Conservation, 16: 49–67. DOI:
Strömberg, C. A. E. & Feranec, R. S. (2004). The evolution of grass-dominated ecosystems during the late Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 207: 199–201. DOI:
Su, N.-Y. & Scheffrahn, R. H. (1998). A review of subterranean termite control practices and prospects for integrated pest management programmes. Integrated Pest Management Reviews, 3: 1–13. DOI:
Taylor, T. N., Klavins, S. D., Krings, M., Taylor, E. L., Kerp, H. & Hass, H. (2004). Fungi from the Rhynie chert: a view from the dark side. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94: 457–473. DOI:
Tordoff, G., Boddy, L. & Jones, T. H. (2006). Grazing by Folsomia candida (Collembola) differentially affects mycelial morphology of the cord-forming basidiomycetes Hypholoma fasciculare, Phanerochaete velutina and Resinicium bicolor. Mycological Research, 110: 335–345. DOI:
Trinci, A. P. J., Davies, D. R., Gull, K., Lawrence, M. I., Bonde Nielsen, B., Rickers, A. & Theodorou, M. K. (1994). Anaerobic fungi in herbivorous animals. Mycological Research, 98: 129–152. DOI:
Giezen, M. (2002). Strange fungi with even stranger insides. Mycologist, 16: 129–131. DOI:
Varma, A., Kolli, B. K., Paul, J., Saxena, S. & König, H. (1994). Lignocellulose degradation by microorganisms from termite hills and termite guts: a survey on the present state of art. FEMS Microbiology Reviews, 15: 9–28. DOI:
Vega, F. E. & Blackwell, M. (2005). Insect–Fungal Associations: Ecology and Evolution. Oxford, UK: Oxford University Press. ISBN-10: 0195166523, ISBN-13: 9780195166521. URL:
Vellinga, E. C. (2004). Genera in the family Agaricaceae: evidence from nrITS and nrLSU sequences. Mycological Research, 108: 354–377. DOI:
Wood, J., Tordoff, G. M., Jones, T. H. & Boddy, L. (2006). Reorganization of mycelial networks of Phanerochaete velutina in response to new woody resources and collembola (Folsomia candida) grazing. Mycological Research, 110: 985–993. DOI: 05.013.
Yang, Y., Yang, E., An, Z. & Liu, X. (2007). Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proceedings of the National Academy of Sciences of the United States of America, 104: 8379–8384. DOI:
Yeates, G. W. & Bongers, T. (1999). Nematode diversity in agroecosystems. Agriculture, Ecosystems and Environment, 74: 113–135. DOI: